Vulnerabilities (CVE)

Filtered by CWE-787
Total 12605 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2025-7986 1 Ashlar 1 Graphite 2025-09-22 N/A 7.8 HIGH
Ashlar-Vellum Graphite VC6 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Graphite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25755.
CVE-2025-7980 1 Ashlar 1 Graphite 2025-09-22 N/A 7.8 HIGH
Ashlar-Vellum Graphite VC6 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Graphite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25465.
CVE-2025-7990 1 Ashlar 1 Cobalt 2025-09-22 N/A 7.8 HIGH
Ashlar-Vellum Cobalt VC6 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25944.
CVE-2025-7996 1 Ashlar 1 Cobalt 2025-09-22 N/A 7.8 HIGH
Ashlar-Vellum Cobalt AR File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of AR files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25982.
CVE-2025-7998 1 Ashlar 1 Cobalt 2025-09-22 N/A 7.8 HIGH
Ashlar-Vellum Cobalt CO File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26046.
CVE-2022-49292 1 Linux 1 Linux Kernel 2025-09-22 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: ALSA: oss: Fix PCM OSS buffer allocation overflow We've got syzbot reports hitting INT_MAX overflow at vmalloc() allocation that is called from snd_pcm_plug_alloc(). Although we apply the restrictions to input parameters, it's based only on the hw_params of the underlying PCM device. Since the PCM OSS layer allocates a temporary buffer for the data conversion, the size may become unexpectedly large when more channels or higher rates is given; in the reported case, it went over INT_MAX, hence it hits WARN_ON(). This patch is an attempt to avoid such an overflow and an allocation for too large buffers. First off, it adds the limit of 1MB as the upper bound for period bytes. This must be large enough for all use cases, and we really don't want to handle a larger temporary buffer than this size. The size check is performed at two places, where the original period bytes is calculated and where the plugin buffer size is calculated. In addition, the driver uses array_size() and array3_size() for multiplications to catch overflows for the converted period size and buffer bytes.
CVE-2025-4918 1 Mozilla 2 Firefox, Thunderbird 2025-09-22 N/A 9.8 CRITICAL
An attacker was able to perform an out-of-bounds read or write on a JavaScript `Promise` object. This vulnerability affects Firefox < 138.0.4, Firefox ESR < 128.10.1, Firefox ESR < 115.23.1, Thunderbird < 128.10.2, and Thunderbird < 138.0.2.
CVE-2025-30273 1 Qnap 2 Qts, Quts Hero 2025-09-22 N/A 8.1 HIGH
An out-of-bounds write vulnerability has been reported to affect several QNAP operating system versions. If a remote attacker gains a user account, they can then exploit the vulnerability to modify or corrupt memory. We have already fixed the vulnerability in the following versions: QTS 5.2.5.3145 build 20250526 and later QuTS hero h5.2.5.3138 build 20250519 and later
CVE-2025-21042 1 Samsung 1 Android 2025-09-19 N/A 8.8 HIGH
Out-of-bounds write in libimagecodec.quram.so prior to SMR Apr-2025 Release 1 allows remote attackers to execute arbitrary code.
CVE-2022-45688 2 Hutool, Stleary 2 Hutool, Json-java 2025-09-19 N/A 7.5 HIGH
A stack overflow in the XML.toJSONObject component of hutool-json v5.8.10 allows attackers to cause a Denial of Service (DoS) via crafted JSON or XML data.
CVE-2023-47430 1 Readymedia Project 1 Readymedia 2025-09-19 N/A 7.5 HIGH
Stack-buffer-overflow vulnerability in ReadyMedia (MiniDLNA) v1.3.3 allows attackers to cause a denial of service via via the SendContainer() function at tivo_commands.c.
CVE-2024-35797 1 Linux 1 Linux Kernel 2025-09-19 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: mm: cachestat: fix two shmem bugs When cachestat on shmem races with swapping and invalidation, there are two possible bugs: 1) A swapin error can have resulted in a poisoned swap entry in the shmem inode's xarray. Calling get_shadow_from_swap_cache() on it will result in an out-of-bounds access to swapper_spaces[]. Validate the entry with non_swap_entry() before going further. 2) When we find a valid swap entry in the shmem's inode, the shadow entry in the swapcache might not exist yet: swap IO is still in progress and we're before __remove_mapping; swapin, invalidation, or swapoff have removed the shadow from swapcache after we saw the shmem swap entry. This will send a NULL to workingset_test_recent(). The latter purely operates on pointer bits, so it won't crash - node 0, memcg ID 0, eviction timestamp 0, etc. are all valid inputs - but it's a bogus test. In theory that could result in a false "recently evicted" count. Such a false positive wouldn't be the end of the world. But for code clarity and (future) robustness, be explicit about this case. Bail on get_shadow_from_swap_cache() returning NULL.
CVE-2025-8893 1 Autodesk 11 Advance Steel, Autocad, Autocad Architecture and 8 more 2025-09-19 N/A 7.8 HIGH
A maliciously crafted PDF file, when parsed through certain Autodesk products, can force an Out-of-Bounds Write vulnerability. A malicious actor may leverage this vulnerability to cause a crash, cause data corruption, or execute arbitrary code in the context of the current process.
CVE-2024-0088 2 Linux, Nvidia 2 Linux Kernel, Triton Inference Server 2025-09-19 N/A 5.5 MEDIUM
NVIDIA Triton Inference Server for Linux contains a vulnerability in shared memory APIs, where a user can cause an improper memory access issue by a network API. A successful exploit of this vulnerability might lead to denial of service and data tampering.
CVE-2024-27036 1 Linux 1 Linux Kernel 2025-09-18 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix writeback data corruption cifs writeback doesn't correctly handle the case where cifs_extend_writeback() hits a point where it is considering an additional folio, but this would overrun the wsize - at which point it drops out of the xarray scanning loop and calls xas_pause(). The problem is that xas_pause() advances the loop counter - thereby skipping that page. What needs to happen is for xas_reset() to be called any time we decide we don't want to process the page we're looking at, but rather send the request we are building and start a new one. Fix this by copying and adapting the netfslib writepages code as a temporary measure, with cifs writeback intending to be offloaded to netfslib in the near future. This also fixes the issue with the use of filemap_get_folios_tag() causing retry of a bunch of pages which the extender already dealt with. This can be tested by creating, say, a 64K file somewhere not on cifs (otherwise copy-offload may get underfoot), mounting a cifs share with a wsize of 64000, copying the file to it and then comparing the original file and the copy: dd if=/dev/urandom of=/tmp/64K bs=64k count=1 mount //192.168.6.1/test /mnt -o user=...,pass=...,wsize=64000 cp /tmp/64K /mnt/64K cmp /tmp/64K /mnt/64K Without the fix, the cmp fails at position 64000 (or shortly thereafter).
CVE-2021-47536 1 Linux 1 Linux Kernel 2025-09-18 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: net/smc: fix wrong list_del in smc_lgr_cleanup_early smc_lgr_cleanup_early() meant to delete the link group from the link group list, but it deleted the list head by mistake. This may cause memory corruption since we didn't remove the real link group from the list and later memseted the link group structure. We got a list corruption panic when testing: [  231.277259] list_del corruption. prev->next should be ffff8881398a8000, but was 0000000000000000 [  231.278222] ------------[ cut here ]------------ [  231.278726] kernel BUG at lib/list_debug.c:53! [  231.279326] invalid opcode: 0000 [#1] SMP NOPTI [  231.279803] CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.10.46+ #435 [  231.280466] Hardware name: Alibaba Cloud ECS, BIOS 8c24b4c 04/01/2014 [  231.281248] Workqueue: events smc_link_down_work [  231.281732] RIP: 0010:__list_del_entry_valid+0x70/0x90 [  231.282258] Code: 4c 60 82 e8 7d cc 6a 00 0f 0b 48 89 fe 48 c7 c7 88 4c 60 82 e8 6c cc 6a 00 0f 0b 48 89 fe 48 c7 c7 c0 4c 60 82 e8 5b cc 6a 00 <0f> 0b 48 89 fe 48 c7 c7 00 4d 60 82 e8 4a cc 6a 00 0f 0b cc cc cc [  231.284146] RSP: 0018:ffffc90000033d58 EFLAGS: 00010292 [  231.284685] RAX: 0000000000000054 RBX: ffff8881398a8000 RCX: 0000000000000000 [  231.285415] RDX: 0000000000000001 RSI: ffff88813bc18040 RDI: ffff88813bc18040 [  231.286141] RBP: ffffffff8305ad40 R08: 0000000000000003 R09: 0000000000000001 [  231.286873] R10: ffffffff82803da0 R11: ffffc90000033b90 R12: 0000000000000001 [  231.287606] R13: 0000000000000000 R14: ffff8881398a8000 R15: 0000000000000003 [  231.288337] FS:  0000000000000000(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 [  231.289160] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [  231.289754] CR2: 0000000000e72058 CR3: 000000010fa96006 CR4: 00000000003706f0 [  231.290485] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [  231.291211] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [  231.291940] Call Trace: [  231.292211]  smc_lgr_terminate_sched+0x53/0xa0 [  231.292677]  smc_switch_conns+0x75/0x6b0 [  231.293085]  ? update_load_avg+0x1a6/0x590 [  231.293517]  ? ttwu_do_wakeup+0x17/0x150 [  231.293907]  ? update_load_avg+0x1a6/0x590 [  231.294317]  ? newidle_balance+0xca/0x3d0 [  231.294716]  smcr_link_down+0x50/0x1a0 [  231.295090]  ? __wake_up_common_lock+0x77/0x90 [  231.295534]  smc_link_down_work+0x46/0x60 [  231.295933]  process_one_work+0x18b/0x350
CVE-2021-47566 1 Linux 1 Linux Kernel 2025-09-18 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: proc/vmcore: fix clearing user buffer by properly using clear_user() To clear a user buffer we cannot simply use memset, we have to use clear_user(). With a virtio-mem device that registers a vmcore_cb and has some logically unplugged memory inside an added Linux memory block, I can easily trigger a BUG by copying the vmcore via "cp": systemd[1]: Starting Kdump Vmcore Save Service... kdump[420]: Kdump is using the default log level(3). kdump[453]: saving to /sysroot/var/crash/127.0.0.1-2021-11-11-14:59:22/ kdump[458]: saving vmcore-dmesg.txt to /sysroot/var/crash/127.0.0.1-2021-11-11-14:59:22/ kdump[465]: saving vmcore-dmesg.txt complete kdump[467]: saving vmcore BUG: unable to handle page fault for address: 00007f2374e01000 #PF: supervisor write access in kernel mode #PF: error_code(0x0003) - permissions violation PGD 7a523067 P4D 7a523067 PUD 7a528067 PMD 7a525067 PTE 800000007048f867 Oops: 0003 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 468 Comm: cp Not tainted 5.15.0+ #6 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-27-g64f37cc530f1-prebuilt.qemu.org 04/01/2014 RIP: 0010:read_from_oldmem.part.0.cold+0x1d/0x86 Code: ff ff ff e8 05 ff fe ff e9 b9 e9 7f ff 48 89 de 48 c7 c7 38 3b 60 82 e8 f1 fe fe ff 83 fd 08 72 3c 49 8d 7d 08 4c 89 e9 89 e8 <49> c7 45 00 00 00 00 00 49 c7 44 05 f8 00 00 00 00 48 83 e7 f81 RSP: 0018:ffffc9000073be08 EFLAGS: 00010212 RAX: 0000000000001000 RBX: 00000000002fd000 RCX: 00007f2374e01000 RDX: 0000000000000001 RSI: 00000000ffffdfff RDI: 00007f2374e01008 RBP: 0000000000001000 R08: 0000000000000000 R09: ffffc9000073bc50 R10: ffffc9000073bc48 R11: ffffffff829461a8 R12: 000000000000f000 R13: 00007f2374e01000 R14: 0000000000000000 R15: ffff88807bd421e8 FS: 00007f2374e12140(0000) GS:ffff88807f000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2374e01000 CR3: 000000007a4aa000 CR4: 0000000000350eb0 Call Trace: read_vmcore+0x236/0x2c0 proc_reg_read+0x55/0xa0 vfs_read+0x95/0x190 ksys_read+0x4f/0xc0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Some x86-64 CPUs have a CPU feature called "Supervisor Mode Access Prevention (SMAP)", which is used to detect wrong access from the kernel to user buffers like this: SMAP triggers a permissions violation on wrong access. In the x86-64 variant of clear_user(), SMAP is properly handled via clac()+stac(). To fix, properly use clear_user() when we're dealing with a user buffer.
CVE-2024-36895 1 Linux 1 Linux Kernel 2025-09-18 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: uvc: use correct buffer size when parsing configfs lists This commit fixes uvc gadget support on 32-bit platforms. Commit 0df28607c5cb ("usb: gadget: uvc: Generalise helper functions for reuse") introduced a helper function __uvcg_iter_item_entries() to aid with parsing lists of items on configfs attributes stores. This function is a generalization of another very similar function, which used a stack-allocated temporary buffer of fixed size for each item in the list and used the sizeof() operator to check for potential buffer overruns. The new function was changed to allocate the now variably sized temp buffer on heap, but wasn't properly updated to also check for max buffer size using the computed size instead of sizeof() operator. As a result, the maximum item size was 7 (plus null terminator) on 64-bit platforms, and 3 on 32-bit ones. While 7 is accidentally just barely enough, 3 is definitely too small for some of UVC configfs attributes. For example, dwFrameInteval, specified in 100ns units, usually has 6-digit item values, e.g. 166666 for 60fps.
CVE-2025-6499 1 Vstakhov 1 Libucl 2025-09-18 1.7 LOW 3.3 LOW
A vulnerability classified as problematic was found in vstakhov libucl up to 0.9.2. Affected by this vulnerability is the function ucl_parse_multiline_string of the file src/ucl_parser.c. The manipulation leads to heap-based buffer overflow. The attack needs to be approached locally. The exploit has been disclosed to the public and may be used.
CVE-2025-0677 2025-09-18 N/A 6.4 MEDIUM
A flaw was found in grub2. When performing a symlink lookup, the grub's UFS module checks the inode's data size to allocate the internal buffer to read the file content, however, it fails to check if the symlink data size has overflown. When this occurs, grub_malloc() may be called with a smaller value than needed. When further reading the data from the disk into the buffer, the grub_ufs_lookup_symlink() function will write past the end of the allocated size. An attack can leverage this by crafting a malicious filesystem, and as a result, it will corrupt data stored in the heap, allowing for arbitrary code execution used to by-pass secure boot mechanisms.