Filtered by vendor Linux
Subscribe
Total
11668 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2024-56628 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: LoongArch: Add architecture specific huge_pte_clear() When executing mm selftests run_vmtests.sh, there is such an error: BUG: Bad page state in process uffd-unit-tests pfn:00000 page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x0 flags: 0xffff0000002000(reserved|node=0|zone=0|lastcpupid=0xffff) raw: 00ffff0000002000 ffffbf0000000008 ffffbf0000000008 0000000000000000 raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set Modules linked in: snd_seq_dummy snd_seq snd_seq_device rfkill vfat fat virtio_balloon efi_pstore virtio_net pstore net_failover failover fuse nfnetlink virtio_scsi virtio_gpu virtio_dma_buf dm_multipath efivarfs CPU: 2 UID: 0 PID: 1913 Comm: uffd-unit-tests Not tainted 6.12.0 #184 Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022 Stack : 900000047c8ac000 0000000000000000 9000000000223a7c 900000047c8ac000 900000047c8af690 900000047c8af698 0000000000000000 900000047c8af7d8 900000047c8af7d0 900000047c8af7d0 900000047c8af5b0 0000000000000001 0000000000000001 900000047c8af698 10b3c7d53da40d26 0000010000000000 0000000000000022 0000000fffffffff fffffffffe000000 ffff800000000000 000000000000002f 0000800000000000 000000017a6d4000 90000000028f8940 0000000000000000 0000000000000000 90000000025aa5e0 9000000002905000 0000000000000000 90000000028f8940 ffff800000000000 0000000000000000 0000000000000000 0000000000000000 9000000000223a94 000000012001839c 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d ... Call Trace: [<9000000000223a94>] show_stack+0x5c/0x180 [<9000000001c3fd64>] dump_stack_lvl+0x6c/0xa0 [<900000000056aa08>] bad_page+0x1a0/0x1f0 [<9000000000574978>] free_unref_folios+0xbf0/0xd20 [<90000000004e65cc>] folios_put_refs+0x1a4/0x2b8 [<9000000000599a0c>] free_pages_and_swap_cache+0x164/0x260 [<9000000000547698>] tlb_batch_pages_flush+0xa8/0x1c0 [<9000000000547f30>] tlb_finish_mmu+0xa8/0x218 [<9000000000543cb8>] exit_mmap+0x1a0/0x360 [<9000000000247658>] __mmput+0x78/0x200 [<900000000025583c>] do_exit+0x43c/0xde8 [<9000000000256490>] do_group_exit+0x68/0x110 [<9000000000256554>] sys_exit_group+0x1c/0x20 [<9000000001c413b4>] do_syscall+0x94/0x130 [<90000000002216d8>] handle_syscall+0xb8/0x158 Disabling lock debugging due to kernel taint BUG: non-zero pgtables_bytes on freeing mm: -16384 On LoongArch system, invalid huge pte entry should be invalid_pte_table or a single _PAGE_HUGE bit rather than a zero value. And it should be the same with invalid pmd entry, since pmd_none() is called by function free_pgd_range() and pmd_none() return 0 by huge_pte_clear(). So single _PAGE_HUGE bit is also treated as a valid pte table and free_pte_range() will be called in free_pmd_range(). free_pmd_range() pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; free_pte_range(tlb, pmd, addr); } while (pmd++, addr = next, addr != end); Here invalid_pte_table is used for both invalid huge pte entry and pmd entry. | |||||
CVE-2024-56633 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: tcp_bpf: Fix the sk_mem_uncharge logic in tcp_bpf_sendmsg The current sk memory accounting logic in __SK_REDIRECT is pre-uncharging tosend bytes, which is either msg->sg.size or a smaller value apply_bytes. Potential problems with this strategy are as follows: - If the actual sent bytes are smaller than tosend, we need to charge some bytes back, as in line 487, which is okay but seems not clean. - When tosend is set to apply_bytes, as in line 417, and (ret < 0), we may miss uncharging (msg->sg.size - apply_bytes) bytes. [...] 415 tosend = msg->sg.size; 416 if (psock->apply_bytes && psock->apply_bytes < tosend) 417 tosend = psock->apply_bytes; [...] 443 sk_msg_return(sk, msg, tosend); 444 release_sock(sk); 446 origsize = msg->sg.size; 447 ret = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 448 msg, tosend, flags); 449 sent = origsize - msg->sg.size; [...] 454 lock_sock(sk); 455 if (unlikely(ret < 0)) { 456 int free = sk_msg_free_nocharge(sk, msg); 458 if (!cork) 459 *copied -= free; 460 } [...] 487 if (eval == __SK_REDIRECT) 488 sk_mem_charge(sk, tosend - sent); [...] When running the selftest test_txmsg_redir_wait_sndmem with txmsg_apply, the following warning will be reported: ------------[ cut here ]------------ WARNING: CPU: 6 PID: 57 at net/ipv4/af_inet.c:156 inet_sock_destruct+0x190/0x1a0 Modules linked in: CPU: 6 UID: 0 PID: 57 Comm: kworker/6:0 Not tainted 6.12.0-rc1.bm.1-amd64+ #43 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 Workqueue: events sk_psock_destroy RIP: 0010:inet_sock_destruct+0x190/0x1a0 RSP: 0018:ffffad0a8021fe08 EFLAGS: 00010206 RAX: 0000000000000011 RBX: ffff9aab4475b900 RCX: ffff9aab481a0800 RDX: 0000000000000303 RSI: 0000000000000011 RDI: ffff9aab4475b900 RBP: ffff9aab4475b990 R08: 0000000000000000 R09: ffff9aab40050ec0 R10: 0000000000000000 R11: ffff9aae6fdb1d01 R12: ffff9aab49c60400 R13: ffff9aab49c60598 R14: ffff9aab49c60598 R15: dead000000000100 FS: 0000000000000000(0000) GS:ffff9aae6fd80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffec7e47bd8 CR3: 00000001a1a1c004 CR4: 0000000000770ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> ? __warn+0x89/0x130 ? inet_sock_destruct+0x190/0x1a0 ? report_bug+0xfc/0x1e0 ? handle_bug+0x5c/0xa0 ? exc_invalid_op+0x17/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? inet_sock_destruct+0x190/0x1a0 __sk_destruct+0x25/0x220 sk_psock_destroy+0x2b2/0x310 process_scheduled_works+0xa3/0x3e0 worker_thread+0x117/0x240 ? __pfx_worker_thread+0x10/0x10 kthread+0xcf/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x40 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> ---[ end trace 0000000000000000 ]--- In __SK_REDIRECT, a more concise way is delaying the uncharging after sent bytes are finalized, and uncharge this value. When (ret < 0), we shall invoke sk_msg_free. Same thing happens in case __SK_DROP, when tosend is set to apply_bytes, we may miss uncharging (msg->sg.size - apply_bytes) bytes. The same warning will be reported in selftest. [...] 468 case __SK_DROP: 469 default: 470 sk_msg_free_partial(sk, msg, tosend); 471 sk_msg_apply_bytes(psock, tosend); 472 *copied -= (tosend + delta); 473 return -EACCES; [...] So instead of sk_msg_free_partial we can do sk_msg_free here. | |||||
CVE-2024-56564 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ceph: pass cred pointer to ceph_mds_auth_match() This eliminates a redundant get_current_cred() call, because ceph_mds_check_access() has already obtained this pointer. As a side effect, this also fixes a reference leak in ceph_mds_auth_match(): by omitting the get_current_cred() call, no additional cred reference is taken. | |||||
CVE-2024-56565 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to drop all discards after creating snapshot on lvm device Piergiorgio reported a bug in bugzilla as below: ------------[ cut here ]------------ WARNING: CPU: 2 PID: 969 at fs/f2fs/segment.c:1330 RIP: 0010:__submit_discard_cmd+0x27d/0x400 [f2fs] Call Trace: __issue_discard_cmd+0x1ca/0x350 [f2fs] issue_discard_thread+0x191/0x480 [f2fs] kthread+0xcf/0x100 ret_from_fork+0x31/0x50 ret_from_fork_asm+0x1a/0x30 w/ below testcase, it can reproduce this bug quickly: - pvcreate /dev/vdb - vgcreate myvg1 /dev/vdb - lvcreate -L 1024m -n mylv1 myvg1 - mount /dev/myvg1/mylv1 /mnt/f2fs - dd if=/dev/zero of=/mnt/f2fs/file bs=1M count=20 - sync - rm /mnt/f2fs/file - sync - lvcreate -L 1024m -s -n mylv1-snapshot /dev/myvg1/mylv1 - umount /mnt/f2fs The root cause is: it will update discard_max_bytes of mounted lvm device to zero after creating snapshot on this lvm device, then, __submit_discard_cmd() will pass parameter @nr_sects w/ zero value to __blkdev_issue_discard(), it returns a NULL bio pointer, result in panic. This patch changes as below for fixing: 1. Let's drop all remained discards in f2fs_unfreeze() if snapshot of lvm device is created. 2. Checking discard_max_bytes before submitting discard during __submit_discard_cmd(). | |||||
CVE-2024-56570 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: ovl: Filter invalid inodes with missing lookup function Add a check to the ovl_dentry_weird() function to prevent the processing of directory inodes that lack the lookup function. This is important because such inodes can cause errors in overlayfs when passed to the lowerstack. | |||||
CVE-2024-56573 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: efi/libstub: Free correct pointer on failure cmdline_ptr is an out parameter, which is not allocated by the function itself, and likely points into the caller's stack. cmdline refers to the pool allocation that should be freed when cleaning up after a failure, so pass this instead to free_pool(). | |||||
CVE-2024-56560 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: slab: Fix too strict alignment check in create_cache() On m68k, where the minimum alignment of unsigned long is 2 bytes: Kernel panic - not syncing: __kmem_cache_create_args: Failed to create slab 'io_kiocb'. Error -22 CPU: 0 UID: 0 PID: 1 Comm: swapper Not tainted 6.12.0-atari-03776-g7eaa1f99261a #1783 Stack from 0102fe5c: 0102fe5c 00514a2b 00514a2b ffffff00 00000001 0051f5ed 00425e78 00514a2b 0041eb74 ffffffea 00000310 0051f5ed ffffffea ffffffea 00601f60 00000044 0102ff20 000e7a68 0051ab8e 004383b8 0051f5ed ffffffea 000000b8 00000007 01020c00 00000000 000e77f0 0041e5f0 005f67c0 0051f5ed 000000b6 0102fef4 00000310 0102fef4 00000000 00000016 005f676c 0060a34c 00000010 00000004 00000038 0000009a 01000000 000000b8 005f668e 0102e000 00001372 0102ff88 Call Trace: [<00425e78>] dump_stack+0xc/0x10 [<0041eb74>] panic+0xd8/0x26c [<000e7a68>] __kmem_cache_create_args+0x278/0x2e8 [<000e77f0>] __kmem_cache_create_args+0x0/0x2e8 [<0041e5f0>] memset+0x0/0x8c [<005f67c0>] io_uring_init+0x54/0xd2 The minimal alignment of an integral type may differ from its size, hence is not safe to assume that an arbitrary freeptr_t (which is basically an unsigned long) is always aligned to 4 or 8 bytes. As nothing seems to require the additional alignment, it is safe to fix this by relaxing the check to the actual minimum alignment of freeptr_t. | |||||
CVE-2024-56562 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: i3c: master: Fix miss free init_dyn_addr at i3c_master_put_i3c_addrs() if (dev->boardinfo && dev->boardinfo->init_dyn_addr) ^^^ here check "init_dyn_addr" i3c_bus_set_addr_slot_status(&master->bus, dev->info.dyn_addr, ...) ^^^^ free "dyn_addr" Fix copy/paste error "dyn_addr" by replacing it with "init_dyn_addr". | |||||
CVE-2024-46716 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: dmaengine: altera-msgdma: properly free descriptor in msgdma_free_descriptor Remove list_del call in msgdma_chan_desc_cleanup, this should be the role of msgdma_free_descriptor. In consequence replace list_add_tail with list_move_tail in msgdma_free_descriptor. This fixes the path: msgdma_free_chan_resources -> msgdma_free_descriptors -> msgdma_free_desc_list -> msgdma_free_descriptor which does not correctly free the descriptors as first nodes were not removed from the list. | |||||
CVE-2024-56591 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_conn: Use disable_delayed_work_sync This makes use of disable_delayed_work_sync instead cancel_delayed_work_sync as it not only cancel the ongoing work but also disables new submit which is disarable since the object holding the work is about to be freed. | |||||
CVE-2024-56583 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: sched/deadline: Fix warning in migrate_enable for boosted tasks When running the following command: while true; do stress-ng --cyclic 30 --timeout 30s --minimize --quiet done a warning is eventually triggered: WARNING: CPU: 43 PID: 2848 at kernel/sched/deadline.c:794 setup_new_dl_entity+0x13e/0x180 ... Call Trace: <TASK> ? show_trace_log_lvl+0x1c4/0x2df ? enqueue_dl_entity+0x631/0x6e0 ? setup_new_dl_entity+0x13e/0x180 ? __warn+0x7e/0xd0 ? report_bug+0x11a/0x1a0 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 enqueue_dl_entity+0x631/0x6e0 enqueue_task_dl+0x7d/0x120 __do_set_cpus_allowed+0xe3/0x280 __set_cpus_allowed_ptr_locked+0x140/0x1d0 __set_cpus_allowed_ptr+0x54/0xa0 migrate_enable+0x7e/0x150 rt_spin_unlock+0x1c/0x90 group_send_sig_info+0xf7/0x1a0 ? kill_pid_info+0x1f/0x1d0 kill_pid_info+0x78/0x1d0 kill_proc_info+0x5b/0x110 __x64_sys_kill+0x93/0xc0 do_syscall_64+0x5c/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 RIP: 0033:0x7f0dab31f92b This warning occurs because set_cpus_allowed dequeues and enqueues tasks with the ENQUEUE_RESTORE flag set. If the task is boosted, the warning is triggered. A boosted task already had its parameters set by rt_mutex_setprio, and a new call to setup_new_dl_entity is unnecessary, hence the WARN_ON call. Check if we are requeueing a boosted task and avoid calling setup_new_dl_entity if that's the case. | |||||
CVE-2024-56584 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: io_uring/tctx: work around xa_store() allocation error issue syzbot triggered the following WARN_ON: WARNING: CPU: 0 PID: 16 at io_uring/tctx.c:51 __io_uring_free+0xfa/0x140 io_uring/tctx.c:51 which is the WARN_ON_ONCE(!xa_empty(&tctx->xa)); sanity check in __io_uring_free() when a io_uring_task is going through its final put. The syzbot test case includes injecting memory allocation failures, and it very much looks like xa_store() can fail one of its memory allocations and end up with ->head being non-NULL even though no entries exist in the xarray. Until this issue gets sorted out, work around it by attempting to iterate entries in our xarray, and WARN_ON_ONCE() if one is found. | |||||
CVE-2024-56586 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix f2fs_bug_on when uninstalling filesystem call f2fs_evict_inode. creating a large files during checkpoint disable until it runs out of space and then delete it, then remount to enable checkpoint again, and then unmount the filesystem triggers the f2fs_bug_on as below: ------------[ cut here ]------------ kernel BUG at fs/f2fs/inode.c:896! CPU: 2 UID: 0 PID: 1286 Comm: umount Not tainted 6.11.0-rc7-dirty #360 Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI RIP: 0010:f2fs_evict_inode+0x58c/0x610 Call Trace: __die_body+0x15/0x60 die+0x33/0x50 do_trap+0x10a/0x120 f2fs_evict_inode+0x58c/0x610 do_error_trap+0x60/0x80 f2fs_evict_inode+0x58c/0x610 exc_invalid_op+0x53/0x60 f2fs_evict_inode+0x58c/0x610 asm_exc_invalid_op+0x16/0x20 f2fs_evict_inode+0x58c/0x610 evict+0x101/0x260 dispose_list+0x30/0x50 evict_inodes+0x140/0x190 generic_shutdown_super+0x2f/0x150 kill_block_super+0x11/0x40 kill_f2fs_super+0x7d/0x140 deactivate_locked_super+0x2a/0x70 cleanup_mnt+0xb3/0x140 task_work_run+0x61/0x90 The root cause is: creating large files during disable checkpoint period results in not enough free segments, so when writing back root inode will failed in f2fs_enable_checkpoint. When umount the file system after enabling checkpoint, the root inode is dirty in f2fs_evict_inode function, which triggers BUG_ON. The steps to reproduce are as follows: dd if=/dev/zero of=f2fs.img bs=1M count=55 mount f2fs.img f2fs_dir -o checkpoint=disable:10% dd if=/dev/zero of=big bs=1M count=50 sync rm big mount -o remount,checkpoint=enable f2fs_dir umount f2fs_dir Let's redirty inode when there is not free segments during checkpoint is disable. | |||||
CVE-2024-56589 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: scsi: hisi_sas: Add cond_resched() for no forced preemption model For no forced preemption model kernel, in the scenario where the expander is connected to 12 high performance SAS SSDs, the following call trace may occur: [ 214.409199][ C240] watchdog: BUG: soft lockup - CPU#240 stuck for 22s! [irq/149-hisi_sa:3211] [ 214.568533][ C240] pstate: 60400009 (nZCv daif +PAN -UAO -TCO BTYPE=--) [ 214.575224][ C240] pc : fput_many+0x8c/0xdc [ 214.579480][ C240] lr : fput+0x1c/0xf0 [ 214.583302][ C240] sp : ffff80002de2b900 [ 214.587298][ C240] x29: ffff80002de2b900 x28: ffff1082aa412000 [ 214.593291][ C240] x27: ffff3062a0348c08 x26: ffff80003a9f6000 [ 214.599284][ C240] x25: ffff1062bbac5c40 x24: 0000000000001000 [ 214.605277][ C240] x23: 000000000000000a x22: 0000000000000001 [ 214.611270][ C240] x21: 0000000000001000 x20: 0000000000000000 [ 214.617262][ C240] x19: ffff3062a41ae580 x18: 0000000000010000 [ 214.623255][ C240] x17: 0000000000000001 x16: ffffdb3a6efe5fc0 [ 214.629248][ C240] x15: ffffffffffffffff x14: 0000000003ffffff [ 214.635241][ C240] x13: 000000000000ffff x12: 000000000000029c [ 214.641234][ C240] x11: 0000000000000006 x10: ffff80003a9f7fd0 [ 214.647226][ C240] x9 : ffffdb3a6f0482fc x8 : 0000000000000001 [ 214.653219][ C240] x7 : 0000000000000002 x6 : 0000000000000080 [ 214.659212][ C240] x5 : ffff55480ee9b000 x4 : fffffde7f94c6554 [ 214.665205][ C240] x3 : 0000000000000002 x2 : 0000000000000020 [ 214.671198][ C240] x1 : 0000000000000021 x0 : ffff3062a41ae5b8 [ 214.677191][ C240] Call trace: [ 214.680320][ C240] fput_many+0x8c/0xdc [ 214.684230][ C240] fput+0x1c/0xf0 [ 214.687707][ C240] aio_complete_rw+0xd8/0x1fc [ 214.692225][ C240] blkdev_bio_end_io+0x98/0x140 [ 214.696917][ C240] bio_endio+0x160/0x1bc [ 214.701001][ C240] blk_update_request+0x1c8/0x3bc [ 214.705867][ C240] scsi_end_request+0x3c/0x1f0 [ 214.710471][ C240] scsi_io_completion+0x7c/0x1a0 [ 214.715249][ C240] scsi_finish_command+0x104/0x140 [ 214.720200][ C240] scsi_softirq_done+0x90/0x180 [ 214.724892][ C240] blk_mq_complete_request+0x5c/0x70 [ 214.730016][ C240] scsi_mq_done+0x48/0xac [ 214.734194][ C240] sas_scsi_task_done+0xbc/0x16c [libsas] [ 214.739758][ C240] slot_complete_v3_hw+0x260/0x760 [hisi_sas_v3_hw] [ 214.746185][ C240] cq_thread_v3_hw+0xbc/0x190 [hisi_sas_v3_hw] [ 214.752179][ C240] irq_thread_fn+0x34/0xa4 [ 214.756435][ C240] irq_thread+0xc4/0x130 [ 214.760520][ C240] kthread+0x108/0x13c [ 214.764430][ C240] ret_from_fork+0x10/0x18 This is because in the hisi_sas driver, both the hardware interrupt handler and the interrupt thread are executed on the same CPU. In the performance test scenario, function irq_wait_for_interrupt() will always return 0 if lots of interrupts occurs and the CPU will be continuously consumed. As a result, the CPU cannot run the watchdog thread. When the watchdog time exceeds the specified time, call trace occurs. To fix it, add cond_resched() to execute the watchdog thread. | |||||
CVE-2024-42120 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check pipe offset before setting vblank pipe_ctx has a size of MAX_PIPES so checking its index before accessing the array. This fixes an OVERRUN issue reported by Coverity. | |||||
CVE-2024-42112 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: net: txgbe: free isb resources at the right time When using MSI/INTx interrupt, the shared interrupts are still being handled in the device remove routine, before free IRQs. So isb memory is still read after it is freed. Thus move wx_free_isb_resources() from txgbe_close() to txgbe_remove(). And fix the improper isb free action in txgbe_open() error handling path. | |||||
CVE-2024-42110 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: net: ntb_netdev: Move ntb_netdev_rx_handler() to call netif_rx() from __netif_rx() The following is emitted when using idxd (DSA) dmanegine as the data mover for ntb_transport that ntb_netdev uses. [74412.546922] BUG: using smp_processor_id() in preemptible [00000000] code: irq/52-idxd-por/14526 [74412.556784] caller is netif_rx_internal+0x42/0x130 [74412.562282] CPU: 6 PID: 14526 Comm: irq/52-idxd-por Not tainted 6.9.5 #5 [74412.569870] Hardware name: Intel Corporation ArcherCity/ArcherCity, BIOS EGSDCRB1.E9I.1752.P05.2402080856 02/08/2024 [74412.581699] Call Trace: [74412.584514] <TASK> [74412.586933] dump_stack_lvl+0x55/0x70 [74412.591129] check_preemption_disabled+0xc8/0xf0 [74412.596374] netif_rx_internal+0x42/0x130 [74412.600957] __netif_rx+0x20/0xd0 [74412.604743] ntb_netdev_rx_handler+0x66/0x150 [ntb_netdev] [74412.610985] ntb_complete_rxc+0xed/0x140 [ntb_transport] [74412.617010] ntb_rx_copy_callback+0x53/0x80 [ntb_transport] [74412.623332] idxd_dma_complete_txd+0xe3/0x160 [idxd] [74412.628963] idxd_wq_thread+0x1a6/0x2b0 [idxd] [74412.634046] irq_thread_fn+0x21/0x60 [74412.638134] ? irq_thread+0xa8/0x290 [74412.642218] irq_thread+0x1a0/0x290 [74412.646212] ? __pfx_irq_thread_fn+0x10/0x10 [74412.651071] ? __pfx_irq_thread_dtor+0x10/0x10 [74412.656117] ? __pfx_irq_thread+0x10/0x10 [74412.660686] kthread+0x100/0x130 [74412.664384] ? __pfx_kthread+0x10/0x10 [74412.668639] ret_from_fork+0x31/0x50 [74412.672716] ? __pfx_kthread+0x10/0x10 [74412.676978] ret_from_fork_asm+0x1a/0x30 [74412.681457] </TASK> The cause is due to the idxd driver interrupt completion handler uses threaded interrupt and the threaded handler is not hard or soft interrupt context. However __netif_rx() can only be called from interrupt context. Change the call to netif_rx() in order to allow completion via normal context for dmaengine drivers that utilize threaded irq handling. While the following commit changed from netif_rx() to __netif_rx(), baebdf48c360 ("net: dev: Makes sure netif_rx() can be invoked in any context."), the change should've been a noop instead. However, the code precedes this fix should've been using netif_rx_ni() or netif_rx_any_context(). | |||||
CVE-2024-42098 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: crypto: ecdh - explicitly zeroize private_key private_key is overwritten with the key parameter passed in by the caller (if present), or alternatively a newly generated private key. However, it is possible that the caller provides a key (or the newly generated key) which is shorter than the previous key. In that scenario, some key material from the previous key would not be overwritten. The easiest solution is to explicitly zeroize the entire private_key array first. Note that this patch slightly changes the behavior of this function: previously, if the ecc_gen_privkey failed, the old private_key would remain. Now, the private_key is always zeroized. This behavior is consistent with the case where params.key is set and ecc_is_key_valid fails. | |||||
CVE-2024-42095 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: serial: 8250_omap: Implementation of Errata i2310 As per Errata i2310[0], Erroneous timeout can be triggered, if this Erroneous interrupt is not cleared then it may leads to storm of interrupts, therefore apply Errata i2310 solution. [0] https://www.ti.com/lit/pdf/sprz536 page 23 | |||||
CVE-2024-42091 | 1 Linux | 1 Linux Kernel | 2025-10-07 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Check pat.ops before dumping PAT settings We may leave pat.ops unset when running on brand new platform or when running as a VF. While the former is unlikely, the latter is valid (future) use case and will cause NPD when someone will try to dump PAT settings by debugfs. It's better to check pointer to pat.ops instead of specific .dump hook, as we have this hook always defined for every .ops variant. |