Filtered by vendor Linux
Subscribe
Total
10394 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2021-47004 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 7.1 HIGH |
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid touching checkpointed data in get_victim() In CP disabling mode, there are two issues when using LFS or SSR | AT_SSR mode to select victim: 1. LFS is set to find source section during GC, the victim should have no checkpointed data, since after GC, section could not be set free for reuse. Previously, we only check valid chpt blocks in current segment rather than section, fix it. 2. SSR | AT_SSR are set to find target segment for writes which can be fully filled by checkpointed and newly written blocks, we should never select such segment, otherwise it can cause panic or data corruption during allocation, potential case is described as below: a) target segment has 'n' (n < 512) ckpt valid blocks b) GC migrates 'n' valid blocks to other segment (segment is still in dirty list) c) GC migrates '512 - n' blocks to target segment (segment has 'n' cp_vblocks and '512 - n' vblocks) d) If GC selects target segment via {AT,}SSR allocator, however there is no free space in targe segment. | |||||
CVE-2021-46999 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: sctp: do asoc update earlier in sctp_sf_do_dupcook_a There's a panic that occurs in a few of envs, the call trace is as below: [] general protection fault, ... 0x29acd70f1000a: 0000 [#1] SMP PTI [] RIP: 0010:sctp_ulpevent_notify_peer_addr_change+0x4b/0x1fa [sctp] [] sctp_assoc_control_transport+0x1b9/0x210 [sctp] [] sctp_do_8_2_transport_strike.isra.16+0x15c/0x220 [sctp] [] sctp_cmd_interpreter.isra.21+0x1231/0x1a10 [sctp] [] sctp_do_sm+0xc3/0x2a0 [sctp] [] sctp_generate_timeout_event+0x81/0xf0 [sctp] This is caused by a transport use-after-free issue. When processing a duplicate COOKIE-ECHO chunk in sctp_sf_do_dupcook_a(), both COOKIE-ACK and SHUTDOWN chunks are allocated with the transort from the new asoc. However, later in the sideeffect machine, the old asoc is used to send them out and old asoc's shutdown_last_sent_to is set to the transport that SHUTDOWN chunk attached to in sctp_cmd_setup_t2(), which actually belongs to the new asoc. After the new_asoc is freed and the old asoc T2 timeout, the old asoc's shutdown_last_sent_to that is already freed would be accessed in sctp_sf_t2_timer_expire(). Thanks Alexander and Jere for helping dig into this issue. To fix it, this patch is to do the asoc update first, then allocate the COOKIE-ACK and SHUTDOWN chunks with the 'updated' old asoc. This would make more sense, as a chunk from an asoc shouldn't be sent out with another asoc. We had fixed quite a few issues caused by this. | |||||
CVE-2021-46977 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: KVM: VMX: Disable preemption when probing user return MSRs Disable preemption when probing a user return MSR via RDSMR/WRMSR. If the MSR holds a different value per logical CPU, the WRMSR could corrupt the host's value if KVM is preempted between the RDMSR and WRMSR, and then rescheduled on a different CPU. Opportunistically land the helper in common x86, SVM will use the helper in a future commit. | |||||
CVE-2021-46972 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ovl: fix leaked dentry Since commit 6815f479ca90 ("ovl: use only uppermetacopy state in ovl_lookup()"), overlayfs doesn't put temporary dentry when there is a metacopy error, which leads to dentry leaks when shutting down the related superblock: overlayfs: refusing to follow metacopy origin for (/file0) ... BUG: Dentry (____ptrval____){i=3f33,n=file3} still in use (1) [unmount of overlay overlay] ... WARNING: CPU: 1 PID: 432 at umount_check.cold+0x107/0x14d CPU: 1 PID: 432 Comm: unmount-overlay Not tainted 5.12.0-rc5 #1 ... RIP: 0010:umount_check.cold+0x107/0x14d ... Call Trace: d_walk+0x28c/0x950 ? dentry_lru_isolate+0x2b0/0x2b0 ? __kasan_slab_free+0x12/0x20 do_one_tree+0x33/0x60 shrink_dcache_for_umount+0x78/0x1d0 generic_shutdown_super+0x70/0x440 kill_anon_super+0x3e/0x70 deactivate_locked_super+0xc4/0x160 deactivate_super+0xfa/0x140 cleanup_mnt+0x22e/0x370 __cleanup_mnt+0x1a/0x30 task_work_run+0x139/0x210 do_exit+0xb0c/0x2820 ? __kasan_check_read+0x1d/0x30 ? find_held_lock+0x35/0x160 ? lock_release+0x1b6/0x660 ? mm_update_next_owner+0xa20/0xa20 ? reacquire_held_locks+0x3f0/0x3f0 ? __sanitizer_cov_trace_const_cmp4+0x22/0x30 do_group_exit+0x135/0x380 __do_sys_exit_group.isra.0+0x20/0x20 __x64_sys_exit_group+0x3c/0x50 do_syscall_64+0x45/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xae ... VFS: Busy inodes after unmount of overlay. Self-destruct in 5 seconds. Have a nice day... This fix has been tested with a syzkaller reproducer. | |||||
CVE-2021-46971 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 3.3 LOW |
In the Linux kernel, the following vulnerability has been resolved: perf/core: Fix unconditional security_locked_down() call Currently, the lockdown state is queried unconditionally, even though its result is used only if the PERF_SAMPLE_REGS_INTR bit is set in attr.sample_type. While that doesn't matter in case of the Lockdown LSM, it causes trouble with the SELinux's lockdown hook implementation. SELinux implements the locked_down hook with a check whether the current task's type has the corresponding "lockdown" class permission ("integrity" or "confidentiality") allowed in the policy. This means that calling the hook when the access control decision would be ignored generates a bogus permission check and audit record. Fix this by checking sample_type first and only calling the hook when its result would be honored. | |||||
CVE-2021-46970 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: pci_generic: Remove WQ_MEM_RECLAIM flag from state workqueue A recent change created a dedicated workqueue for the state-change work with WQ_HIGHPRI (no strong reason for that) and WQ_MEM_RECLAIM flags, but the state-change work (mhi_pm_st_worker) does not guarantee forward progress under memory pressure, and will even wait on various memory allocations when e.g. creating devices, loading firmware, etc... The work is then not part of a memory reclaim path... Moreover, this causes a warning in check_flush_dependency() since we end up in code that flushes a non-reclaim workqueue: [ 40.969601] workqueue: WQ_MEM_RECLAIM mhi_hiprio_wq:mhi_pm_st_worker [mhi] is flushing !WQ_MEM_RECLAIM events_highpri:flush_backlog [ 40.969612] WARNING: CPU: 4 PID: 158 at kernel/workqueue.c:2607 check_flush_dependency+0x11c/0x140 [ 40.969733] Call Trace: [ 40.969740] __flush_work+0x97/0x1d0 [ 40.969745] ? wake_up_process+0x15/0x20 [ 40.969749] ? insert_work+0x70/0x80 [ 40.969750] ? __queue_work+0x14a/0x3e0 [ 40.969753] flush_work+0x10/0x20 [ 40.969756] rollback_registered_many+0x1c9/0x510 [ 40.969759] unregister_netdevice_queue+0x94/0x120 [ 40.969761] unregister_netdev+0x1d/0x30 [ 40.969765] mhi_net_remove+0x1a/0x40 [mhi_net] [ 40.969770] mhi_driver_remove+0x124/0x250 [mhi] [ 40.969776] device_release_driver_internal+0xf0/0x1d0 [ 40.969778] device_release_driver+0x12/0x20 [ 40.969782] bus_remove_device+0xe1/0x150 [ 40.969786] device_del+0x17b/0x3e0 [ 40.969791] mhi_destroy_device+0x9a/0x100 [mhi] [ 40.969796] ? mhi_unmap_single_use_bb+0x50/0x50 [mhi] [ 40.969799] device_for_each_child+0x5e/0xa0 [ 40.969804] mhi_pm_st_worker+0x921/0xf50 [mhi] | |||||
CVE-2021-46969 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: core: Fix invalid error returning in mhi_queue mhi_queue returns an error when the doorbell is not accessible in the current state. This can happen when the device is in non M0 state, like M3, and needs to be waken-up prior ringing the DB. This case is managed earlier by triggering an asynchronous M3 exit via controller resume/suspend callbacks, that in turn will cause M0 transition and DB update. So, since it's not an error but just delaying of doorbell update, there is no reason to return an error. This also fixes a use after free error for skb case, indeed a caller queuing skb will try to free the skb if the queueing fails, but in that case queueing has been done. | |||||
CVE-2021-46965 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 7.1 HIGH |
In the Linux kernel, the following vulnerability has been resolved: mtd: physmap: physmap-bt1-rom: Fix unintentional stack access Cast &data to (char *) in order to avoid unintentionally accessing the stack. Notice that data is of type u32, so any increment to &data will be in the order of 4-byte chunks, and this piece of code is actually intended to be a byte offset. Addresses-Coverity-ID: 1497765 ("Out-of-bounds access") | |||||
CVE-2024-56708 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: EDAC/igen6: Avoid segmentation fault on module unload The segmentation fault happens because: During modprobe: 1. In igen6_probe(), igen6_pvt will be allocated with kzalloc() 2. In igen6_register_mci(), mci->pvt_info will point to &igen6_pvt->imc[mc] During rmmod: 1. In mci_release() in edac_mc.c, it will kfree(mci->pvt_info) 2. In igen6_remove(), it will kfree(igen6_pvt); Fix this issue by setting mci->pvt_info to NULL to avoid the double kfree. | |||||
CVE-2024-56688 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: sunrpc: clear XPRT_SOCK_UPD_TIMEOUT when reset transport Since transport->sock has been set to NULL during reset transport, XPRT_SOCK_UPD_TIMEOUT also needs to be cleared. Otherwise, the xs_tcp_set_socket_timeouts() may be triggered in xs_tcp_send_request() to dereference the transport->sock that has been set to NULL. | |||||
CVE-2024-56614 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: xsk: fix OOB map writes when deleting elements Jordy says: " In the xsk_map_delete_elem function an unsigned integer (map->max_entries) is compared with a user-controlled signed integer (k). Due to implicit type conversion, a large unsigned value for map->max_entries can bypass the intended bounds check: if (k >= map->max_entries) return -EINVAL; This allows k to hold a negative value (between -2147483648 and -2), which is then used as an array index in m->xsk_map[k], which results in an out-of-bounds access. spin_lock_bh(&m->lock); map_entry = &m->xsk_map[k]; // Out-of-bounds map_entry old_xs = unrcu_pointer(xchg(map_entry, NULL)); // Oob write if (old_xs) xsk_map_sock_delete(old_xs, map_entry); spin_unlock_bh(&m->lock); The xchg operation can then be used to cause an out-of-bounds write. Moreover, the invalid map_entry passed to xsk_map_sock_delete can lead to further memory corruption. " It indeed results in following splat: [76612.897343] BUG: unable to handle page fault for address: ffffc8fc2e461108 [76612.904330] #PF: supervisor write access in kernel mode [76612.909639] #PF: error_code(0x0002) - not-present page [76612.914855] PGD 0 P4D 0 [76612.917431] Oops: Oops: 0002 [#1] PREEMPT SMP [76612.921859] CPU: 11 UID: 0 PID: 10318 Comm: a.out Not tainted 6.12.0-rc1+ #470 [76612.929189] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [76612.939781] RIP: 0010:xsk_map_delete_elem+0x2d/0x60 [76612.944738] Code: 00 00 41 54 55 53 48 63 2e 3b 6f 24 73 38 4c 8d a7 f8 00 00 00 48 89 fb 4c 89 e7 e8 2d bf 05 00 48 8d b4 eb 00 01 00 00 31 ff <48> 87 3e 48 85 ff 74 05 e8 16 ff ff ff 4c 89 e7 e8 3e bc 05 00 31 [76612.963774] RSP: 0018:ffffc9002e407df8 EFLAGS: 00010246 [76612.969079] RAX: 0000000000000000 RBX: ffffc9002e461000 RCX: 0000000000000000 [76612.976323] RDX: 0000000000000001 RSI: ffffc8fc2e461108 RDI: 0000000000000000 [76612.983569] RBP: ffffffff80000001 R08: 0000000000000000 R09: 0000000000000007 [76612.990812] R10: ffffc9002e407e18 R11: ffff888108a38858 R12: ffffc9002e4610f8 [76612.998060] R13: ffff888108a38858 R14: 00007ffd1ae0ac78 R15: ffffc9002e4610c0 [76613.005303] FS: 00007f80b6f59740(0000) GS:ffff8897e0ec0000(0000) knlGS:0000000000000000 [76613.013517] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [76613.019349] CR2: ffffc8fc2e461108 CR3: 000000011e3ef001 CR4: 00000000007726f0 [76613.026595] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [76613.033841] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [76613.041086] PKRU: 55555554 [76613.043842] Call Trace: [76613.046331] <TASK> [76613.048468] ? __die+0x20/0x60 [76613.051581] ? page_fault_oops+0x15a/0x450 [76613.055747] ? search_extable+0x22/0x30 [76613.059649] ? search_bpf_extables+0x5f/0x80 [76613.063988] ? exc_page_fault+0xa9/0x140 [76613.067975] ? asm_exc_page_fault+0x22/0x30 [76613.072229] ? xsk_map_delete_elem+0x2d/0x60 [76613.076573] ? xsk_map_delete_elem+0x23/0x60 [76613.080914] __sys_bpf+0x19b7/0x23c0 [76613.084555] __x64_sys_bpf+0x1a/0x20 [76613.088194] do_syscall_64+0x37/0xb0 [76613.091832] entry_SYSCALL_64_after_hwframe+0x4b/0x53 [76613.096962] RIP: 0033:0x7f80b6d1e88d [76613.100592] Code: 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 b5 0f 00 f7 d8 64 89 01 48 [76613.119631] RSP: 002b:00007ffd1ae0ac68 EFLAGS: 00000206 ORIG_RAX: 0000000000000141 [76613.131330] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f80b6d1e88d [76613.142632] RDX: 0000000000000098 RSI: 00007ffd1ae0ad20 RDI: 0000000000000003 [76613.153967] RBP: 00007ffd1ae0adc0 R08: 0000000000000000 R09: 0000000000000000 [76613.166030] R10: 00007f80b6f77040 R11: 0000000000000206 R12: 00007ffd1ae0aed8 [76613.177130] R13: 000055ddf42ce1e9 R14: 000055ddf42d0d98 R15: 00 ---truncated--- | |||||
CVE-2024-56579 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: media: amphion: Set video drvdata before register video device The video drvdata should be set before the video device is registered, otherwise video_drvdata() may return NULL in the open() file ops, and led to oops. | |||||
CVE-2024-56578 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: media: imx-jpeg: Set video drvdata before register video device The video drvdata should be set before the video device is registered, otherwise video_drvdata() may return NULL in the open() file ops, and led to oops. | |||||
CVE-2024-56536 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: wifi: cw1200: Fix potential NULL dereference A recent refactoring was identified by static analysis to cause a potential NULL dereference, fix this! | |||||
CVE-2021-47019 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: mt76: mt7921: fix possible invalid register access Disable the interrupt and synchronze for the pending irq handlers to ensure the irq tasklet is not being scheduled after the suspend to avoid the possible invalid register access acts when the host pcie controller is suspended. [17932.910534] mt7921e 0000:01:00.0: pci_pm_suspend+0x0/0x22c returned 0 after 21375 usecs [17932.910590] pcieport 0000:00:00.0: calling pci_pm_suspend+0x0/0x22c @ 18565, parent: pci0000:00 [17932.910602] pcieport 0000:00:00.0: pci_pm_suspend+0x0/0x22c returned 0 after 8 usecs [17932.910671] mtk-pcie 11230000.pcie: calling platform_pm_suspend+0x0/0x60 @ 22783, parent: soc [17932.910674] mtk-pcie 11230000.pcie: platform_pm_suspend+0x0/0x60 returned 0 after 0 usecs ... 17933.615352] x1 : 00000000000d4200 x0 : ffffff8269ca2300 [17933.620666] Call trace: [17933.623127] mt76_mmio_rr+0x28/0xf0 [mt76] [17933.627234] mt7921_rr+0x38/0x44 [mt7921e] [17933.631339] mt7921_irq_tasklet+0x54/0x1d8 [mt7921e] [17933.636309] tasklet_action_common+0x12c/0x16c [17933.640754] tasklet_action+0x24/0x2c [17933.644418] __do_softirq+0x16c/0x344 [17933.648082] irq_exit+0xa8/0xac [17933.651224] scheduler_ipi+0xd4/0x148 [17933.654890] handle_IPI+0x164/0x2d4 [17933.658379] gic_handle_irq+0x140/0x178 [17933.662216] el1_irq+0xb8/0x180 [17933.665361] cpuidle_enter_state+0xf8/0x204 [17933.669544] cpuidle_enter+0x38/0x4c [17933.673122] do_idle+0x1a4/0x2a8 [17933.676352] cpu_startup_entry+0x24/0x28 [17933.680276] rest_init+0xd4/0xe0 [17933.683508] arch_call_rest_init+0x10/0x18 [17933.687606] start_kernel+0x340/0x3b4 [17933.691279] Code: aa0003f5 d503201f f953eaa8 8b344108 (b9400113) [17933.697373] ---[ end trace a24b8e26ffbda3c5 ]--- [17933.767846] Kernel panic - not syncing: Fatal exception in interrupt | |||||
CVE-2021-47018 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: powerpc/64: Fix the definition of the fixmap area At the time being, the fixmap area is defined at the top of the address space or just below KASAN. This definition is not valid for PPC64. For PPC64, use the top of the I/O space. Because of circular dependencies, it is not possible to include asm/fixmap.h in asm/book3s/64/pgtable.h , so define a fixed size AREA at the top of the I/O space for fixmap and ensure during build that the size is big enough. | |||||
CVE-2024-56613 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: sched/numa: fix memory leak due to the overwritten vma->numab_state [Problem Description] When running the hackbench program of LTP, the following memory leak is reported by kmemleak. # /opt/ltp/testcases/bin/hackbench 20 thread 1000 Running with 20*40 (== 800) tasks. # dmesg | grep kmemleak ... kmemleak: 480 new suspected memory leaks (see /sys/kernel/debug/kmemleak) kmemleak: 665 new suspected memory leaks (see /sys/kernel/debug/kmemleak) # cat /sys/kernel/debug/kmemleak unreferenced object 0xffff888cd8ca2c40 (size 64): comm "hackbench", pid 17142, jiffies 4299780315 hex dump (first 32 bytes): ac 74 49 00 01 00 00 00 4c 84 49 00 01 00 00 00 .tI.....L.I..... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc bff18fd4): [<ffffffff81419a89>] __kmalloc_cache_noprof+0x2f9/0x3f0 [<ffffffff8113f715>] task_numa_work+0x725/0xa00 [<ffffffff8110f878>] task_work_run+0x58/0x90 [<ffffffff81ddd9f8>] syscall_exit_to_user_mode+0x1c8/0x1e0 [<ffffffff81dd78d5>] do_syscall_64+0x85/0x150 [<ffffffff81e0012b>] entry_SYSCALL_64_after_hwframe+0x76/0x7e ... This issue can be consistently reproduced on three different servers: * a 448-core server * a 256-core server * a 192-core server [Root Cause] Since multiple threads are created by the hackbench program (along with the command argument 'thread'), a shared vma might be accessed by two or more cores simultaneously. When two or more cores observe that vma->numab_state is NULL at the same time, vma->numab_state will be overwritten. Although current code ensures that only one thread scans the VMAs in a single 'numa_scan_period', there might be a chance for another thread to enter in the next 'numa_scan_period' while we have not gotten till numab_state allocation [1]. Note that the command `/opt/ltp/testcases/bin/hackbench 50 process 1000` cannot the reproduce the issue. It is verified with 200+ test runs. [Solution] Use the cmpxchg atomic operation to ensure that only one thread executes the vma->numab_state assignment. [1] https://lore.kernel.org/lkml/1794be3c-358c-4cdc-a43d-a1f841d91ef7@amd.com/ | |||||
CVE-2021-46968 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: s390/zcrypt: fix zcard and zqueue hot-unplug memleak Tests with kvm and a kmemdebug kernel showed, that on hot unplug the zcard and zqueue structs for the unplugged card or queue are not properly freed because of a mismatch with get/put for the embedded kref counter. This fix now adjusts the handling of the kref counters. With init the kref counter starts with 1. This initial value needs to drop to zero with the unregister of the card or queue to trigger the release and free the object. | |||||
CVE-2024-56711 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/panel: himax-hx83102: Add a check to prevent NULL pointer dereference drm_mode_duplicate() could return NULL due to lack of memory, which will then call NULL pointer dereference. Add a check to prevent it. | |||||
CVE-2024-56697 | 1 Linux | 1 Linux Kernel | 2025-01-08 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix the memory allocation issue in amdgpu_discovery_get_nps_info() Fix two issues with memory allocation in amdgpu_discovery_get_nps_info() for mem_ranges: - Add a check for allocation failure to avoid dereferencing a null pointer. - As suggested by Christophe, use kvcalloc() for memory allocation, which checks for multiplication overflow. Additionally, assign the output parameters nps_type and range_cnt after the kvcalloc() call to prevent modifying the output parameters in case of an error return. |