Vulnerabilities (CVE)

Filtered by vendor Nodejs Subscribe
Total 170 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2016-3956 3 Ibm, Nodejs, Npmjs 3 Sdk, Node.js, Npm 2025-04-12 5.0 MEDIUM 7.5 HIGH
The CLI in npm before 2.15.1 and 3.x before 3.8.3, as used in Node.js 0.10 before 0.10.44, 0.12 before 0.12.13, 4 before 4.4.2, and 5 before 5.10.0, includes bearer tokens with arbitrary requests, which allows remote HTTP servers to obtain sensitive information by reading Authorization headers.
CVE-2016-5172 3 Debian, Google, Nodejs 3 Debian Linux, Chrome, Node.js 2025-04-12 4.3 MEDIUM 6.5 MEDIUM
The parser in Google V8, as used in Google Chrome before 53.0.2785.113, mishandles scopes, which allows remote attackers to obtain sensitive information from arbitrary memory locations via crafted JavaScript code.
CVE-2023-44487 32 Akka, Amazon, Apache and 29 more 311 Http Server, Opensearch Data Prepper, Apisix and 308 more 2025-04-12 N/A 7.5 HIGH
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023.
CVE-2013-4450 1 Nodejs 1 Nodejs 2025-04-11 5.0 MEDIUM N/A
The HTTP server in Node.js 0.10.x before 0.10.21 and 0.8.x before 0.8.26 allows remote attackers to cause a denial of service (memory and CPU consumption) by sending a large number of pipelined requests without reading the response.
CVE-2012-2330 1 Nodejs 1 Nodejs 2025-04-11 6.4 MEDIUM N/A
The Update method in src/node_http_parser.cc in Node.js before 0.6.17 and 0.7 before 0.7.8 does not properly check the length of a string, which allows remote attackers to obtain sensitive information (request header contents) and possibly spoof HTTP headers via a zero length string.
CVE-2013-2882 4 Debian, Google, Nodejs and 1 more 4 Debian Linux, Chrome, Node.js and 1 more 2025-04-11 7.5 HIGH N/A
Google V8, as used in Google Chrome before 28.0.1500.95, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors that leverage "type confusion."
CVE-2024-22019 2 Netapp, Nodejs 2 Astra Control Center, Node.js 2025-04-02 N/A 7.5 HIGH
A vulnerability in Node.js HTTP servers allows an attacker to send a specially crafted HTTP request with chunked encoding, leading to resource exhaustion and denial of service (DoS). The server reads an unbounded number of bytes from a single connection, exploiting the lack of limitations on chunk extension bytes. The issue can cause CPU and network bandwidth exhaustion, bypassing standard safeguards like timeouts and body size limits.
CVE-2024-21896 1 Nodejs 1 Node.js 2025-04-02 N/A 9.8 CRITICAL
The permission model protects itself against path traversal attacks by calling path.resolve() on any paths given by the user. If the path is to be treated as a Buffer, the implementation uses Buffer.from() to obtain a Buffer from the result of path.resolve(). By monkey-patching Buffer internals, namely, Buffer.prototype.utf8Write, the application can modify the result of path.resolve(), which leads to a path traversal vulnerability. This vulnerability affects all users using the experimental permission model in Node.js 20 and Node.js 21. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js.
CVE-2024-21891 1 Nodejs 1 Node.js 2025-03-28 N/A 8.8 HIGH
Node.js depends on multiple built-in utility functions to normalize paths provided to node:fs functions, which can be overwitten with user-defined implementations leading to filesystem permission model bypass through path traversal attack. This vulnerability affects all users using the experimental permission model in Node.js 20 and Node.js 21. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js.
CVE-2023-23920 2 Debian, Nodejs 2 Debian Linux, Node.js 2025-03-17 N/A 4.2 MEDIUM
An untrusted search path vulnerability exists in Node.js. <19.6.1, <18.14.1, <16.19.1, and <14.21.3 that could allow an attacker to search and potentially load ICU data when running with elevated privileges.
CVE-2024-21892 2 Linux, Nodejs 2 Linux Kernel, Node.js 2025-03-13 N/A 7.8 HIGH
On Linux, Node.js ignores certain environment variables if those may have been set by an unprivileged user while the process is running with elevated privileges with the only exception of CAP_NET_BIND_SERVICE. Due to a bug in the implementation of this exception, Node.js incorrectly applies this exception even when certain other capabilities have been set. This allows unprivileged users to inject code that inherits the process's elevated privileges.
CVE-2023-23919 1 Nodejs 1 Node.js 2025-03-12 N/A 7.5 HIGH
A cryptographic vulnerability exists in Node.js <19.2.0, <18.14.1, <16.19.1, <14.21.3 that in some cases did does not clear the OpenSSL error stack after operations that may set it. This may lead to false positive errors during subsequent cryptographic operations that happen to be on the same thread. This in turn could be used to cause a denial of service.
CVE-2024-30260 2 Fedoraproject, Nodejs 2 Fedora, Undici 2025-02-13 N/A 3.9 LOW
Undici is an HTTP/1.1 client, written from scratch for Node.js. Undici cleared Authorization and Proxy-Authorization headers for `fetch()`, but did not clear them for `undici.request()`. This vulnerability was patched in version(s) 5.28.4 and 6.11.1.
CVE-2023-30589 2 Fedoraproject, Nodejs 2 Fedora, Node.js 2025-02-13 N/A 7.5 HIGH
The llhttp parser in the http module in Node v20.2.0 does not strictly use the CRLF sequence to delimit HTTP requests. This can lead to HTTP Request Smuggling (HRS). The CR character (without LF) is sufficient to delimit HTTP header fields in the llhttp parser. According to RFC7230 section 3, only the CRLF sequence should delimit each header-field. This impacts all Node.js active versions: v16, v18, and, v20
CVE-2024-21890 1 Nodejs 1 Node.js 2025-02-12 N/A 6.5 MEDIUM
The Node.js Permission Model does not clarify in the documentation that wildcards should be only used as the last character of a file path. For example: ``` --allow-fs-read=/home/node/.ssh/*.pub ``` will ignore `pub` and give access to everything after `.ssh/`. This misleading documentation affects all users using the experimental permission model in Node.js 20 and Node.js 21. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js.
CVE-2019-9514 13 Apache, Apple, Canonical and 10 more 30 Traffic Server, Mac Os X, Swiftnio and 27 more 2025-01-14 7.8 HIGH 7.5 HIGH
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both.
CVE-2019-9516 12 Apache, Apple, Canonical and 9 more 21 Traffic Server, Mac Os X, Swiftnio and 18 more 2025-01-14 6.8 MEDIUM 6.5 MEDIUM
Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory.
CVE-2019-9518 11 Apache, Apple, Canonical and 8 more 20 Traffic Server, Mac Os X, Swiftnio and 17 more 2025-01-14 7.8 HIGH 7.5 HIGH
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU.
CVE-2019-9513 12 Apache, Apple, Canonical and 9 more 22 Traffic Server, Mac Os X, Swiftnio and 19 more 2025-01-14 7.8 HIGH 7.5 HIGH
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU.
CVE-2019-9515 12 Apache, Apple, Canonical and 9 more 24 Traffic Server, Mac Os X, Swiftnio and 21 more 2025-01-14 7.8 HIGH 7.5 HIGH
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.