Total
303307 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2022-50004 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: xfrm: policy: fix metadata dst->dev xmit null pointer dereference When we try to transmit an skb with metadata_dst attached (i.e. dst->dev == NULL) through xfrm interface we can hit a null pointer dereference[1] in xfrmi_xmit2() -> xfrm_lookup_with_ifid() due to the check for a loopback skb device when there's no policy which dereferences dst->dev unconditionally. Not having dst->dev can be interepreted as it not being a loopback device, so just add a check for a null dst_orig->dev. With this fix xfrm interface's Tx error counters go up as usual. [1] net-next calltrace captured via netconsole: BUG: kernel NULL pointer dereference, address: 00000000000000c0 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP CPU: 1 PID: 7231 Comm: ping Kdump: loaded Not tainted 5.19.0+ #24 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-1.fc36 04/01/2014 RIP: 0010:xfrm_lookup_with_ifid+0x5eb/0xa60 Code: 8d 74 24 38 e8 26 a4 37 00 48 89 c1 e9 12 fc ff ff 49 63 ed 41 83 fd be 0f 85 be 01 00 00 41 be ff ff ff ff 45 31 ed 48 8b 03 <f6> 80 c0 00 00 00 08 75 0f 41 80 bc 24 19 0d 00 00 01 0f 84 1e 02 RSP: 0018:ffffb0db82c679f0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffd0db7fcad430 RCX: ffffb0db82c67a10 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffb0db82c67a80 RBP: ffffb0db82c67a80 R08: ffffb0db82c67a14 R09: 0000000000000000 R10: 0000000000000000 R11: ffff8fa449667dc8 R12: ffffffff966db880 R13: 0000000000000000 R14: 00000000ffffffff R15: 0000000000000000 FS: 00007ff35c83f000(0000) GS:ffff8fa478480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 000000001ebb7000 CR4: 0000000000350ee0 Call Trace: <TASK> xfrmi_xmit+0xde/0x460 ? tcf_bpf_act+0x13d/0x2a0 dev_hard_start_xmit+0x72/0x1e0 __dev_queue_xmit+0x251/0xd30 ip_finish_output2+0x140/0x550 ip_push_pending_frames+0x56/0x80 raw_sendmsg+0x663/0x10a0 ? try_charge_memcg+0x3fd/0x7a0 ? __mod_memcg_lruvec_state+0x93/0x110 ? sock_sendmsg+0x30/0x40 sock_sendmsg+0x30/0x40 __sys_sendto+0xeb/0x130 ? handle_mm_fault+0xae/0x280 ? do_user_addr_fault+0x1e7/0x680 ? kvm_read_and_reset_apf_flags+0x3b/0x50 __x64_sys_sendto+0x20/0x30 do_syscall_64+0x34/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7ff35cac1366 Code: eb 0b 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 41 89 ca 64 8b 04 25 18 00 00 00 85 c0 75 11 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 72 c3 90 55 48 83 ec 30 44 89 4c 24 2c 4c 89 RSP: 002b:00007fff738e4028 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007fff738e57b0 RCX: 00007ff35cac1366 RDX: 0000000000000040 RSI: 0000557164e4b450 RDI: 0000000000000003 RBP: 0000557164e4b450 R08: 00007fff738e7a2c R09: 0000000000000010 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000040 R13: 00007fff738e5770 R14: 00007fff738e4030 R15: 0000001d00000001 </TASK> Modules linked in: netconsole veth br_netfilter bridge bonding virtio_net [last unloaded: netconsole] CR2: 00000000000000c0 | |||||
CVE-2025-49218 | 2025-06-18 | N/A | 7.7 HIGH | ||
A post-auth SQL injection vulnerability in the Trend Micro Endpoint Encryption PolicyServer could allow an attacker to escalate privileges on affected installations. This is similar to, but not identical to CVE-2025-49215. Please note: an attacker must first obtain the ability to execute low-privileged code on the target system to exploit this vulnerability. | |||||
CVE-2022-49998 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix locking in rxrpc's sendmsg Fix three bugs in the rxrpc's sendmsg implementation: (1) rxrpc_new_client_call() should release the socket lock when returning an error from rxrpc_get_call_slot(). (2) rxrpc_wait_for_tx_window_intr() will return without the call mutex held in the event that we're interrupted by a signal whilst waiting for tx space on the socket or relocking the call mutex afterwards. Fix this by: (a) moving the unlock/lock of the call mutex up to rxrpc_send_data() such that the lock is not held around all of rxrpc_wait_for_tx_window*() and (b) indicating to higher callers whether we're return with the lock dropped. Note that this means recvmsg() will not block on this call whilst we're waiting. (3) After dropping and regaining the call mutex, rxrpc_send_data() needs to go and recheck the state of the tx_pending buffer and the tx_total_len check in case we raced with another sendmsg() on the same call. Thinking on this some more, it might make sense to have different locks for sendmsg() and recvmsg(). There's probably no need to make recvmsg() wait for sendmsg(). It does mean that recvmsg() can return MSG_EOR indicating that a call is dead before a sendmsg() to that call returns - but that can currently happen anyway. Without fix (2), something like the following can be induced: WARNING: bad unlock balance detected! 5.16.0-rc6-syzkaller #0 Not tainted ------------------------------------- syz-executor011/3597 is trying to release lock (&call->user_mutex) at: [<ffffffff885163a3>] rxrpc_do_sendmsg+0xc13/0x1350 net/rxrpc/sendmsg.c:748 but there are no more locks to release! other info that might help us debug this: no locks held by syz-executor011/3597. ... Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_unlock_imbalance_bug include/trace/events/lock.h:58 [inline] __lock_release kernel/locking/lockdep.c:5306 [inline] lock_release.cold+0x49/0x4e kernel/locking/lockdep.c:5657 __mutex_unlock_slowpath+0x99/0x5e0 kernel/locking/mutex.c:900 rxrpc_do_sendmsg+0xc13/0x1350 net/rxrpc/sendmsg.c:748 rxrpc_sendmsg+0x420/0x630 net/rxrpc/af_rxrpc.c:561 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2409 ___sys_sendmsg+0xf3/0x170 net/socket.c:2463 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2492 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae [Thanks to Hawkins Jiawei and Khalid Masum for their attempts to fix this] | |||||
CVE-2022-49943 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: USB: gadget: Fix obscure lockdep violation for udc_mutex A recent commit expanding the scope of the udc_lock mutex in the gadget core managed to cause an obscure and slightly bizarre lockdep violation. In abbreviated form: ====================================================== WARNING: possible circular locking dependency detected 5.19.0-rc7+ #12510 Not tainted ------------------------------------------------------ udevadm/312 is trying to acquire lock: ffff80000aae1058 (udc_lock){+.+.}-{3:3}, at: usb_udc_uevent+0x54/0xe0 but task is already holding lock: ffff000002277548 (kn->active#4){++++}-{0:0}, at: kernfs_seq_start+0x34/0xe0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (kn->active#4){++++}-{0:0}: lock_acquire+0x68/0x84 __kernfs_remove+0x268/0x380 kernfs_remove_by_name_ns+0x58/0xac sysfs_remove_file_ns+0x18/0x24 device_del+0x15c/0x440 -> #2 (device_links_lock){+.+.}-{3:3}: lock_acquire+0x68/0x84 __mutex_lock+0x9c/0x430 mutex_lock_nested+0x38/0x64 device_link_remove+0x3c/0xa0 _regulator_put.part.0+0x168/0x190 regulator_put+0x3c/0x54 devm_regulator_release+0x14/0x20 -> #1 (regulator_list_mutex){+.+.}-{3:3}: lock_acquire+0x68/0x84 __mutex_lock+0x9c/0x430 mutex_lock_nested+0x38/0x64 regulator_lock_dependent+0x54/0x284 regulator_enable+0x34/0x80 phy_power_on+0x24/0x130 __dwc2_lowlevel_hw_enable+0x100/0x130 dwc2_lowlevel_hw_enable+0x18/0x40 dwc2_hsotg_udc_start+0x6c/0x2f0 gadget_bind_driver+0x124/0x1f4 -> #0 (udc_lock){+.+.}-{3:3}: __lock_acquire+0x1298/0x20cc lock_acquire.part.0+0xe0/0x230 lock_acquire+0x68/0x84 __mutex_lock+0x9c/0x430 mutex_lock_nested+0x38/0x64 usb_udc_uevent+0x54/0xe0 Evidently this was caused by the scope of udc_mutex being too large. The mutex is only meant to protect udc->driver along with a few other things. As far as I can tell, there's no reason for the mutex to be held while the gadget core calls a gadget driver's ->bind or ->unbind routine, or while a UDC is being started or stopped. (This accounts for link #1 in the chain above, where the mutex is held while the dwc2_hsotg_udc is started as part of driver probing.) Gadget drivers' ->disconnect callbacks are problematic. Even though usb_gadget_disconnect() will now acquire the udc_mutex, there's a window in usb_gadget_bind_driver() between the times when the mutex is released and the ->bind callback is invoked. If a disconnect occurred during that window, we could call the driver's ->disconnect routine before its ->bind routine. To prevent this from happening, it will be necessary to prevent a UDC from connecting while it has no gadget driver. This should be done already but it doesn't seem to be; currently usb_gadget_connect() has no check for this. Such a check will have to be added later. Some degree of mutual exclusion is required in soft_connect_store(), which can dereference udc->driver at arbitrary times since it is a sysfs callback. The solution here is to acquire the gadget's device lock rather than the udc_mutex. Since the driver core guarantees that the device lock is always held during driver binding and unbinding, this will make the accesses in soft_connect_store() mutually exclusive with any changes to udc->driver. Lastly, it turns out there is one place which should hold the udc_mutex but currently does not: The function_show() routine needs protection while it dereferences udc->driver. The missing lock and unlock calls are added. | |||||
CVE-2022-50033 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: usb: host: ohci-ppc-of: Fix refcount leak bug In ohci_hcd_ppc_of_probe(), of_find_compatible_node() will return a node pointer with refcount incremented. We should use of_node_put() when it is not used anymore. | |||||
CVE-2022-49961 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: bpf: Do mark_chain_precision for ARG_CONST_ALLOC_SIZE_OR_ZERO Precision markers need to be propagated whenever we have an ARG_CONST_* style argument, as the verifier cannot consider imprecise scalars to be equivalent for the purposes of states_equal check when such arguments refine the return value (in this case, set mem_size for PTR_TO_MEM). The resultant mem_size for the R0 is derived from the constant value, and if the verifier incorrectly prunes states considering them equivalent where such arguments exist (by seeing that both registers have reg->precise as false in regsafe), we can end up with invalid programs passing the verifier which can do access beyond what should have been the correct mem_size in that explored state. To show a concrete example of the problem: 0000000000000000 <prog>: 0: r2 = *(u32 *)(r1 + 80) 1: r1 = *(u32 *)(r1 + 76) 2: r3 = r1 3: r3 += 4 4: if r3 > r2 goto +18 <LBB5_5> 5: w2 = 0 6: *(u32 *)(r1 + 0) = r2 7: r1 = *(u32 *)(r1 + 0) 8: r2 = 1 9: if w1 == 0 goto +1 <LBB5_3> 10: r2 = -1 0000000000000058 <LBB5_3>: 11: r1 = 0 ll 13: r3 = 0 14: call bpf_ringbuf_reserve 15: if r0 == 0 goto +7 <LBB5_5> 16: r1 = r0 17: r1 += 16777215 18: w2 = 0 19: *(u8 *)(r1 + 0) = r2 20: r1 = r0 21: r2 = 0 22: call bpf_ringbuf_submit 00000000000000b8 <LBB5_5>: 23: w0 = 0 24: exit For the first case, the single line execution's exploration will prune the search at insn 14 for the branch insn 9's second leg as it will be verified first using r2 = -1 (UINT_MAX), while as w1 at insn 9 will always be 0 so at runtime we don't get error for being greater than UINT_MAX/4 from bpf_ringbuf_reserve. The verifier during regsafe just sees reg->precise as false for both r2 registers in both states, hence considers them equal for purposes of states_equal. If we propagated precise markers using the backtracking support, we would use the precise marking to then ensure that old r2 (UINT_MAX) was within the new r2 (1) and this would never be true, so the verification would rightfully fail. The end result is that the out of bounds access at instruction 19 would be permitted without this fix. Note that reg->precise is always set to true when user does not have CAP_BPF (or when subprog count is greater than 1 (i.e. use of any static or global functions)), hence this is only a problem when precision marks need to be explicitly propagated (i.e. privileged users with CAP_BPF). A simplified test case has been included in the next patch to prevent future regressions. | |||||
CVE-2022-49965 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: add missing ->fini_xxxx interfaces for some SMU13 asics Without these, potential memory leak may be induced. | |||||
CVE-2022-50003 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: ice: xsk: prohibit usage of non-balanced queue id Fix the following scenario: 1. ethtool -L $IFACE rx 8 tx 96 2. xdpsock -q 10 -t -z Above refers to a case where user would like to attach XSK socket in txonly mode at a queue id that does not have a corresponding Rx queue. At this moment ice's XSK logic is tightly bound to act on a "queue pair", e.g. both Tx and Rx queues at a given queue id are disabled/enabled and both of them will get XSK pool assigned, which is broken for the presented queue configuration. This results in the splat included at the bottom, which is basically an OOB access to Rx ring array. To fix this, allow using the ids only in scope of "combined" queues reported by ethtool. However, logic should be rewritten to allow such configurations later on, which would end up as a complete rewrite of the control path, so let us go with this temporary fix. [420160.558008] BUG: kernel NULL pointer dereference, address: 0000000000000082 [420160.566359] #PF: supervisor read access in kernel mode [420160.572657] #PF: error_code(0x0000) - not-present page [420160.579002] PGD 0 P4D 0 [420160.582756] Oops: 0000 [#1] PREEMPT SMP NOPTI [420160.588396] CPU: 10 PID: 21232 Comm: xdpsock Tainted: G OE 5.19.0-rc7+ #10 [420160.597893] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [420160.609894] RIP: 0010:ice_xsk_pool_setup+0x44/0x7d0 [ice] [420160.616968] Code: f3 48 83 ec 40 48 8b 4f 20 48 8b 3f 65 48 8b 04 25 28 00 00 00 48 89 44 24 38 31 c0 48 8d 04 ed 00 00 00 00 48 01 c1 48 8b 11 <0f> b7 92 82 00 00 00 48 85 d2 0f 84 2d 75 00 00 48 8d 72 ff 48 85 [420160.639421] RSP: 0018:ffffc9002d2afd48 EFLAGS: 00010282 [420160.646650] RAX: 0000000000000050 RBX: ffff88811d8bdd00 RCX: ffff888112c14ff8 [420160.655893] RDX: 0000000000000000 RSI: ffff88811d8bdd00 RDI: ffff888109861000 [420160.665166] RBP: 000000000000000a R08: 000000000000000a R09: 0000000000000000 [420160.674493] R10: 000000000000889f R11: 0000000000000000 R12: 000000000000000a [420160.683833] R13: 000000000000000a R14: 0000000000000000 R15: ffff888117611828 [420160.693211] FS: 00007fa869fc1f80(0000) GS:ffff8897e0880000(0000) knlGS:0000000000000000 [420160.703645] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [420160.711783] CR2: 0000000000000082 CR3: 00000001d076c001 CR4: 00000000007706e0 [420160.721399] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [420160.731045] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [420160.740707] PKRU: 55555554 [420160.745960] Call Trace: [420160.750962] <TASK> [420160.755597] ? kmalloc_large_node+0x79/0x90 [420160.762703] ? __kmalloc_node+0x3f5/0x4b0 [420160.769341] xp_assign_dev+0xfd/0x210 [420160.775661] ? shmem_file_read_iter+0x29a/0x420 [420160.782896] xsk_bind+0x152/0x490 [420160.788943] __sys_bind+0xd0/0x100 [420160.795097] ? exit_to_user_mode_prepare+0x20/0x120 [420160.802801] __x64_sys_bind+0x16/0x20 [420160.809298] do_syscall_64+0x38/0x90 [420160.815741] entry_SYSCALL_64_after_hwframe+0x63/0xcd [420160.823731] RIP: 0033:0x7fa86a0dd2fb [420160.830264] Code: c3 66 0f 1f 44 00 00 48 8b 15 69 8b 0c 00 f7 d8 64 89 02 b8 ff ff ff ff eb bc 0f 1f 44 00 00 f3 0f 1e fa b8 31 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 3d 8b 0c 00 f7 d8 64 89 01 48 [420160.855410] RSP: 002b:00007ffc1146f618 EFLAGS: 00000246 ORIG_RAX: 0000000000000031 [420160.866366] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa86a0dd2fb [420160.876957] RDX: 0000000000000010 RSI: 00007ffc1146f680 RDI: 0000000000000003 [420160.887604] RBP: 000055d7113a0520 R08: 00007fa868fb8000 R09: 0000000080000000 [420160.898293] R10: 0000000000008001 R11: 0000000000000246 R12: 000055d7113a04e0 [420160.909038] R13: 000055d7113a0320 R14: 000000000000000a R15: 0000000000000000 [420160.919817] </TASK> [420160.925659] Modules linked in: ice(OE) af_packet binfmt_misc ---truncated--- | |||||
CVE-2022-49959 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: openvswitch: fix memory leak at failed datapath creation ovs_dp_cmd_new()->ovs_dp_change()->ovs_dp_set_upcall_portids() allocates array via kmalloc. If for some reason new_vport() fails during ovs_dp_cmd_new() dp->upcall_portids must be freed. Add missing kfree. Kmemleak example: unreferenced object 0xffff88800c382500 (size 64): comm "dump_state", pid 323, jiffies 4294955418 (age 104.347s) hex dump (first 32 bytes): 5e c2 79 e4 1f 7a 38 c7 09 21 38 0c 80 88 ff ff ^.y..z8..!8..... 03 00 00 00 0a 00 00 00 14 00 00 00 28 00 00 00 ............(... backtrace: [<0000000071bebc9f>] ovs_dp_set_upcall_portids+0x38/0xa0 [<000000000187d8bd>] ovs_dp_change+0x63/0xe0 [<000000002397e446>] ovs_dp_cmd_new+0x1f0/0x380 [<00000000aa06f36e>] genl_family_rcv_msg_doit+0xea/0x150 [<000000008f583bc4>] genl_rcv_msg+0xdc/0x1e0 [<00000000fa10e377>] netlink_rcv_skb+0x50/0x100 [<000000004959cece>] genl_rcv+0x24/0x40 [<000000004699ac7f>] netlink_unicast+0x23e/0x360 [<00000000c153573e>] netlink_sendmsg+0x24e/0x4b0 [<000000006f4aa380>] sock_sendmsg+0x62/0x70 [<00000000d0068654>] ____sys_sendmsg+0x230/0x270 [<0000000012dacf7d>] ___sys_sendmsg+0x88/0xd0 [<0000000011776020>] __sys_sendmsg+0x59/0xa0 [<000000002e8f2dc1>] do_syscall_64+0x3b/0x90 [<000000003243e7cb>] entry_SYSCALL_64_after_hwframe+0x63/0xcd | |||||
CVE-2022-50028 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: gadgetfs: ep_io - wait until IRQ finishes after usb_ep_queue() if wait_for_completion_interruptible() is interrupted we need to wait until IRQ gets finished. Otherwise complete() from epio_complete() can corrupt stack. | |||||
CVE-2025-38056 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: Intel: hda: Fix UAF when reloading module hda_generic_machine_select() appends -idisp to the tplg filename by allocating a new string with devm_kasprintf(), then stores the string right back into the global variable snd_soc_acpi_intel_hda_machines. When the module is unloaded, this memory is freed, resulting in a global variable pointing to freed memory. Reloading the module then triggers a use-after-free: BUG: KFENCE: use-after-free read in string+0x48/0xe0 Use-after-free read at 0x00000000967e0109 (in kfence-#99): string+0x48/0xe0 vsnprintf+0x329/0x6e0 devm_kvasprintf+0x54/0xb0 devm_kasprintf+0x58/0x80 hda_machine_select.cold+0x198/0x17a2 [snd_sof_intel_hda_generic] sof_probe_work+0x7f/0x600 [snd_sof] process_one_work+0x17b/0x330 worker_thread+0x2ce/0x3f0 kthread+0xcf/0x100 ret_from_fork+0x31/0x50 ret_from_fork_asm+0x1a/0x30 kfence-#99: 0x00000000198a940f-0x00000000ace47d9d, size=64, cache=kmalloc-64 allocated by task 333 on cpu 8 at 17.798069s (130.453553s ago): devm_kmalloc+0x52/0x120 devm_kvasprintf+0x66/0xb0 devm_kasprintf+0x58/0x80 hda_machine_select.cold+0x198/0x17a2 [snd_sof_intel_hda_generic] sof_probe_work+0x7f/0x600 [snd_sof] process_one_work+0x17b/0x330 worker_thread+0x2ce/0x3f0 kthread+0xcf/0x100 ret_from_fork+0x31/0x50 ret_from_fork_asm+0x1a/0x30 freed by task 1543 on cpu 4 at 141.586686s (6.665010s ago): release_nodes+0x43/0xb0 devres_release_all+0x90/0xf0 device_unbind_cleanup+0xe/0x70 device_release_driver_internal+0x1c1/0x200 driver_detach+0x48/0x90 bus_remove_driver+0x6d/0xf0 pci_unregister_driver+0x42/0xb0 __do_sys_delete_module+0x1d1/0x310 do_syscall_64+0x82/0x190 entry_SYSCALL_64_after_hwframe+0x76/0x7e Fix it by copying the match array with devm_kmemdup_array() before we modify it. | |||||
CVE-2022-49954 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: Input: iforce - wake up after clearing IFORCE_XMIT_RUNNING flag syzbot is reporting hung task at __input_unregister_device() [1], for iforce_close() waiting at wait_event_interruptible() with dev->mutex held is blocking input_disconnect_device() from __input_unregister_device(). It seems that the cause is simply that commit c2b27ef672992a20 ("Input: iforce - wait for command completion when closing the device") forgot to call wake_up() after clear_bit(). Fix this problem by introducing a helper that calls clear_bit() followed by wake_up_all(). | |||||
CVE-2022-50027 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix possible memory leak when failing to issue CMF WQE There is no corresponding free routine if lpfc_sli4_issue_wqe fails to issue the CMF WQE in lpfc_issue_cmf_sync_wqe. If ret_val is non-zero, then free the iocbq request structure. | |||||
CVE-2022-49953 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: iio: light: cm3605: Fix an error handling path in cm3605_probe() The commit in Fixes also introduced a new error handling path which should goto the existing error handling path. Otherwise some resources leak. | |||||
CVE-2025-38036 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: drm/xe/vf: Perform early GT MMIO initialization to read GMDID VFs need to communicate with the GuC to obtain the GMDID value and existing GuC functions used for that assume that the GT has it's MMIO members already setup. However, due to recent refactoring the gt->mmio is initialized later, and any attempt by the VF to use xe_mmio_read|write() from GuC functions will lead to NPD crash due to unset MMIO register address: [] xe 0000:00:02.1: [drm] Running in SR-IOV VF mode [] xe 0000:00:02.1: [drm] GT0: sending H2G MMIO 0x5507 [] BUG: unable to handle page fault for address: 0000000000190240 Since we are already tweaking the id and type of the primary GT to mimic it's a Media GT before initializing the GuC communication, we can also call xe_gt_mmio_init() to perform early setup of the gt->mmio which will make those GuC functions work again. | |||||
CVE-2025-38034 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: btrfs: correct the order of prelim_ref arguments in btrfs__prelim_ref btrfs_prelim_ref() calls the old and new reference variables in the incorrect order. This causes a NULL pointer dereference because oldref is passed as NULL to trace_btrfs_prelim_ref_insert(). Note, trace_btrfs_prelim_ref_insert() is being called with newref as oldref (and oldref as NULL) on purpose in order to print out the values of newref. To reproduce: echo 1 > /sys/kernel/debug/tracing/events/btrfs/btrfs_prelim_ref_insert/enable Perform some writeback operations. Backtrace: BUG: kernel NULL pointer dereference, address: 0000000000000018 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 115949067 P4D 115949067 PUD 11594a067 PMD 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 1 UID: 0 PID: 1188 Comm: fsstress Not tainted 6.15.0-rc2-tester+ #47 PREEMPT(voluntary) 7ca2cef72d5e9c600f0c7718adb6462de8149622 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-2-gc13ff2cd-prebuilt.qemu.org 04/01/2014 RIP: 0010:trace_event_raw_event_btrfs__prelim_ref+0x72/0x130 Code: e8 43 81 9f ff 48 85 c0 74 78 4d 85 e4 0f 84 8f 00 00 00 49 8b 94 24 c0 06 00 00 48 8b 0a 48 89 48 08 48 8b 52 08 48 89 50 10 <49> 8b 55 18 48 89 50 18 49 8b 55 20 48 89 50 20 41 0f b6 55 28 88 RSP: 0018:ffffce44820077a0 EFLAGS: 00010286 RAX: ffff8c6b403f9014 RBX: ffff8c6b55825730 RCX: 304994edf9cf506b RDX: d8b11eb7f0fdb699 RSI: ffff8c6b403f9010 RDI: ffff8c6b403f9010 RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000010 R10: 00000000ffffffff R11: 0000000000000000 R12: ffff8c6b4e8fb000 R13: 0000000000000000 R14: ffffce44820077a8 R15: ffff8c6b4abd1540 FS: 00007f4dc6813740(0000) GS:ffff8c6c1d378000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000018 CR3: 000000010eb42000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> prelim_ref_insert+0x1c1/0x270 find_parent_nodes+0x12a6/0x1ee0 ? __entry_text_end+0x101f06/0x101f09 ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 btrfs_is_data_extent_shared+0x167/0x640 ? fiemap_process_hole+0xd0/0x2c0 extent_fiemap+0xa5c/0xbc0 ? __entry_text_end+0x101f05/0x101f09 btrfs_fiemap+0x7e/0xd0 do_vfs_ioctl+0x425/0x9d0 __x64_sys_ioctl+0x75/0xc0 | |||||
CVE-2025-38072 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: libnvdimm/labels: Fix divide error in nd_label_data_init() If a faulty CXL memory device returns a broken zero LSA size in its memory device information (Identify Memory Device (Opcode 4000h), CXL spec. 3.1, 8.2.9.9.1.1), a divide error occurs in the libnvdimm driver: Oops: divide error: 0000 [#1] PREEMPT SMP NOPTI RIP: 0010:nd_label_data_init+0x10e/0x800 [libnvdimm] Code and flow: 1) CXL Command 4000h returns LSA size = 0 2) config_size is assigned to zero LSA size (CXL pmem driver): drivers/cxl/pmem.c: .config_size = mds->lsa_size, 3) max_xfer is set to zero (nvdimm driver): drivers/nvdimm/label.c: max_xfer = min_t(size_t, ndd->nsarea.max_xfer, config_size); 4) A subsequent DIV_ROUND_UP() causes a division by zero: drivers/nvdimm/label.c: /* Make our initial read size a multiple of max_xfer size */ drivers/nvdimm/label.c: read_size = min(DIV_ROUND_UP(read_size, max_xfer) * max_xfer, drivers/nvdimm/label.c- config_size); Fix this by checking the config size parameter by extending an existing check. | |||||
CVE-2022-49974 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: HID: nintendo: fix rumble worker null pointer deref We can dereference a null pointer trying to queue work to a destroyed workqueue. If the device is disconnected, nintendo_hid_remove is called, in which the rumble_queue is destroyed. Avoid using that queue to defer rumble work once the controller state is set to JOYCON_CTLR_STATE_REMOVED. This eliminates the null pointer dereference. | |||||
CVE-2022-49997 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: net: lantiq_xrx200: restore buffer if memory allocation failed In a situation where memory allocation fails, an invalid buffer address is stored. When this descriptor is used again, the system panics in the build_skb() function when accessing memory. | |||||
CVE-2022-49950 | 2025-06-18 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: misc: fastrpc: fix memory corruption on open The probe session-duplication overflow check incremented the session count also when there were no more available sessions so that memory beyond the fixed-size slab-allocated session array could be corrupted in fastrpc_session_alloc() on open(). |