Total
1065 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2017-11214 | 3 Adobe, Apple, Microsoft | 7 Acrobat, Acrobat Dc, Acrobat Reader and 4 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
Adobe Acrobat Reader 2017.009.20058 and earlier, 2017.008.30051 and earlier, 2015.006.30306 and earlier, and 11.0.20 and earlier has an exploitable memory corruption vulnerability in the image conversion engine when processing Enhanced Metafile Format (EMF) data related to rendering a path. Successful exploitation could lead to arbitrary code execution. | |||||
CVE-2017-16397 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is a part of Enhanced Metafile Format (EMF) processing within the image conversion module. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. | |||||
CVE-2017-16395 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. The vulnerability is caused by a buffer access with an incorrect length value in the image conversion module when processing Enhanced Metafile Format (EMF). Crafted EMF input (EMR_STRETCHDIBITS) causes a mismatch between allocated buffer size and the access allowed by the computation. If an attacker can adequately control the accessible memory then this vulnerability can be leveraged to achieve arbitrary code execution. | |||||
CVE-2017-16398 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 9.8 CRITICAL |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability is an instance of a use after free vulnerability in the JavaScript engine. The mismatch between an old and a new object can provide an attacker with unintended memory access -- potentially leading to code corruption, control-flow hijack, or an information leak attack. Successful exploitation could lead to arbitrary code execution. | |||||
CVE-2017-16375 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This issue is due to an untrusted pointer dereference in the JavaSscript API engine. In this scenario, the JavaScript input is crafted in way that the computation results in pointers to memory locations that do not belong to the relevant process address space. The dereferencing operation is a read operation, and an attack can result in sensitive data exposure. | |||||
CVE-2017-16369 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 4.3 MEDIUM | 6.5 MEDIUM |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability is an instance of a Same Origin Policy security bypass vulnerability, affecting files on the local system, etc. | |||||
CVE-2017-11236 | 3 Adobe, Apple, Microsoft | 7 Acrobat, Acrobat Dc, Acrobat Reader and 4 more | 2025-04-20 | 4.3 MEDIUM | 6.5 MEDIUM |
Adobe Acrobat Reader 2017.009.20058 and earlier, 2017.008.30051 and earlier, 2015.006.30306 and earlier, and 11.0.20 and earlier has an exploitable memory corruption vulnerability in the internal handling of UTF-16 literal strings. Successful exploitation could lead to arbitrary code execution. | |||||
CVE-2017-11245 | 3 Adobe, Apple, Microsoft | 7 Acrobat, Acrobat Dc, Acrobat Reader and 4 more | 2025-04-20 | 4.3 MEDIUM | 6.5 MEDIUM |
Adobe Acrobat Reader 2017.009.20058 and earlier, 2017.008.30051 and earlier, 2015.006.30306 and earlier, and 11.0.20 and earlier has an exploitable memory corruption vulnerability in the image conversion engine when processing Enhanced Metafile Format (EMF) private data. Successful exploitation could lead to arbitrary code execution. | |||||
CVE-2017-16401 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is part of an image conversion, specifically in Enhanced Metafile Format Plus (EMF +) processing modules. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. | |||||
CVE-2017-16412 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability occurs because of a computation that reads data that is past the end of the target buffer; the computation is part of the XPS conversion module, when handling a JPEG resource. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. | |||||
CVE-2017-16390 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability is an instance of a use after free vulnerability in the JavaScript engine API. The mismatch between an old and a new object can provide an attacker with unintended memory access -- potentially leading to code corruption, control-flow hijack, or an information leak attack. Successful exploitation could lead to arbitrary code execution. | |||||
CVE-2017-16376 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is a part of the MakeAccessible plugin. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. | |||||
CVE-2017-11246 | 3 Adobe, Apple, Microsoft | 7 Acrobat, Acrobat Dc, Acrobat Reader and 4 more | 2025-04-20 | 4.3 MEDIUM | 6.5 MEDIUM |
Adobe Acrobat Reader 2017.009.20058 and earlier, 2017.008.30051 and earlier, 2015.006.30306 and earlier, and 11.0.20 and earlier has an exploitable memory corruption vulnerability in the image conversion engine when parsing JPEG data. Successful exploitation could lead to arbitrary code execution. | |||||
CVE-2017-16363 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. The vulnerability is caused by a buffer over-read in the module that handles character codes for certain textual representations. Invalid input leads to a computation where the pointer arithmetic results in a location outside valid memory locations belonging to the buffer. An attack can be used to obtain sensitive information, such as object heap addresses, etc. | |||||
CVE-2017-11270 | 3 Adobe, Apple, Microsoft | 7 Acrobat, Acrobat Dc, Acrobat Reader and 4 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
Adobe Acrobat Reader 2017.009.20058 and earlier, 2017.008.30051 and earlier, 2015.006.30306 and earlier, and 11.0.20 and earlier has an exploitable memory corruption vulnerability in the image conversion engine when processing Enhanced Metafile Format (EMF) private data representing icons. Successful exploitation could lead to arbitrary code execution. | |||||
CVE-2017-16380 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability is an instance of a security bypass vulnerability for a certain file-type extension. Acrobat maintains both a blacklist and whitelist (the user can specify an allowed attachment). However, any file extensions that are neither on the blacklist nor the whitelist can still be opened after displaying a warning prompt. | |||||
CVE-2017-16372 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This issue is due to untrusted pointer dereference in the JavaScript API engine. In this scenario, the JavaScript input is crafted in way that the computation results with pointer to memory locations that do not belong to the relevant process address space. The dereferencing operation is a read operation, and an attack can result with sensitive data exposure. | |||||
CVE-2017-11221 | 3 Adobe, Apple, Microsoft | 7 Acrobat, Acrobat Dc, Acrobat Reader and 4 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
Adobe Acrobat Reader 2017.009.20058 and earlier, 2017.008.30051 and earlier, 2015.006.30306 and earlier, and 11.0.20 and earlier has an exploitable type confusion vulnerability in the annotation functionality. Successful exploitation could lead to arbitrary code execution. | |||||
CVE-2017-16415 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. The vulnerability is caused by a computation that writes data past the end of the intended buffer; the computation is a part of the functionality that handles font encodings. The vulnerability is a result of out of range pointer offset that is used to access sub-elements of an internal data structure. An attacker can potentially leverage the vulnerability to corrupt sensitive data or execute arbitrary code. | |||||
CVE-2017-16387 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | 9.3 HIGH | 8.8 HIGH |
An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is part of the JPEG2000 codec. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. |