Vulnerabilities (CVE)

Filtered by vendor Siemens Subscribe
Total 1905 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2021-25155 2 Arubanetworks, Siemens 3 Instant, Scalance W1750d, Scalance W1750d Firmware 2024-11-21 8.5 HIGH 6.5 MEDIUM
A remote arbitrary file modification vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.18 and below; Aruba Instant 8.3.x: 8.3.0.14 and below; Aruba Instant 8.5.x: 8.5.0.11 and below; Aruba Instant 8.6.x: 8.6.0.6 and below; Aruba Instant 8.7.x: 8.7.1.0 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
CVE-2021-25150 2 Arubanetworks, Siemens 3 Instant, Scalance W1750d, Scalance W1750d Firmware 2024-11-21 9.0 HIGH 8.8 HIGH
A remote execution of arbitrary commands vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.5.x: 6.5.4.17 and below; Aruba Instant 8.3.x: 8.3.0.13 and below; Aruba Instant 8.5.x: 8.5.0.10 and below; Aruba Instant 8.6.x: 8.6.0.4 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
CVE-2021-25149 2 Arubanetworks, Siemens 3 Instant, Scalance W1750d, Scalance W1750d Firmware 2024-11-21 7.5 HIGH 9.8 CRITICAL
A remote buffer overflow vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.16 and below; Aruba Instant 8.3.x: 8.3.0.12 and below; Aruba Instant 8.5.x: 8.5.0.6 and below; Aruba Instant 8.6.x: 8.6.0.2 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
CVE-2021-25148 2 Arubanetworks, Siemens 3 Instant, Scalance W1750d, Scalance W1750d Firmware 2024-11-21 8.5 HIGH 8.1 HIGH
A remote arbitrary file modification vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.5.x: 6.5.4.17 and below; Aruba Instant 8.3.x: 8.3.0.13 and below; Aruba Instant 8.5.x: 8.5.0.10 and below; Aruba Instant 8.6.x: 8.6.0.4 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
CVE-2021-25146 2 Arubanetworks, Siemens 3 Instant, Scalance W1750d, Scalance W1750d Firmware 2024-11-21 9.0 HIGH 7.2 HIGH
A remote execution of arbitrary commands vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.5.x: 6.5.4.17 and below; Aruba Instant 8.3.x: 8.3.0.13 and below; Aruba Instant 8.5.x: 8.5.0.10 and below; Aruba Instant 8.6.x: 8.6.0.5 and below; Aruba Instant 8.7.x: 8.7.0.0 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
CVE-2021-25145 2 Arubanetworks, Siemens 3 Instant, Scalance W1750d, Scalance W1750d Firmware 2024-11-21 3.3 LOW 6.5 MEDIUM
A remote unauthorized disclosure of information vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.18 and below; Aruba Instant 6.5.x: 6.5.4.18 and below; Aruba Instant 8.3.x: 8.3.0.14 and below; Aruba Instant 8.5.x: 8.5.0.10 and below; Aruba Instant 8.6.x: 8.6.0.5 and below; Aruba Instant 8.7.x: 8.7.0.0 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
CVE-2021-25144 2 Arubanetworks, Siemens 3 Instant, Scalance W1750d, Scalance W1750d Firmware 2024-11-21 9.0 HIGH 8.8 HIGH
A remote buffer overflow vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.16 and below; Aruba Instant 8.3.x: 8.3.0.12 and below; Aruba Instant 8.5.x: 8.5.0.6 and below; Aruba Instant 8.6.x: 8.6.0.2 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
CVE-2021-25143 2 Arubanetworks, Siemens 3 Instant, Scalance W1750d, Scalance W1750d Firmware 2024-11-21 5.0 MEDIUM 7.5 HIGH
A remote denial of service (dos) vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 8.3.x: 8.3.0.12 and below; Aruba Instant 8.5.x: 8.5.0.9 and below; Aruba Instant 8.6.x: 8.6.0.4 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
CVE-2021-23841 7 Apple, Debian, Netapp and 4 more 23 Ipados, Iphone Os, Macos and 20 more 2024-11-21 4.3 MEDIUM 5.9 MEDIUM
The OpenSSL public API function X509_issuer_and_serial_hash() attempts to create a unique hash value based on the issuer and serial number data contained within an X509 certificate. However it fails to correctly handle any errors that may occur while parsing the issuer field (which might occur if the issuer field is maliciously constructed). This may subsequently result in a NULL pointer deref and a crash leading to a potential denial of service attack. The function X509_issuer_and_serial_hash() is never directly called by OpenSSL itself so applications are only vulnerable if they use this function directly and they use it on certificates that may have been obtained from untrusted sources. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x).
CVE-2021-23839 3 Openssl, Oracle, Siemens 8 Openssl, Business Intelligence, Enterprise Manager For Storage Management and 5 more 2024-11-21 4.3 MEDIUM 3.7 LOW
OpenSSL 1.0.2 supports SSLv2. If a client attempts to negotiate SSLv2 with a server that is configured to support both SSLv2 and more recent SSL and TLS versions then a check is made for a version rollback attack when unpadding an RSA signature. Clients that support SSL or TLS versions greater than SSLv2 are supposed to use a special form of padding. A server that supports greater than SSLv2 is supposed to reject connection attempts from a client where this special form of padding is present, because this indicates that a version rollback has occurred (i.e. both client and server support greater than SSLv2, and yet this is the version that is being requested). The implementation of this padding check inverted the logic so that the connection attempt is accepted if the padding is present, and rejected if it is absent. This means that such as server will accept a connection if a version rollback attack has occurred. Further the server will erroneously reject a connection if a normal SSLv2 connection attempt is made. Only OpenSSL 1.0.2 servers from version 1.0.2s to 1.0.2x are affected by this issue. In order to be vulnerable a 1.0.2 server must: 1) have configured SSLv2 support at compile time (this is off by default), 2) have configured SSLv2 support at runtime (this is off by default), 3) have configured SSLv2 ciphersuites (these are not in the default ciphersuite list) OpenSSL 1.1.1 does not have SSLv2 support and therefore is not vulnerable to this issue. The underlying error is in the implementation of the RSA_padding_check_SSLv23() function. This also affects the RSA_SSLV23_PADDING padding mode used by various other functions. Although 1.1.1 does not support SSLv2 the RSA_padding_check_SSLv23() function still exists, as does the RSA_SSLV23_PADDING padding mode. Applications that directly call that function or use that padding mode will encounter this issue. However since there is no support for the SSLv2 protocol in 1.1.1 this is considered a bug and not a security issue in that version. OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.0.2y (Affected 1.0.2s-1.0.2x).
CVE-2021-23362 2 Npmjs, Siemens 2 Hosted-git-info, Sinec Infrastructure Network Services 2024-11-21 5.0 MEDIUM 5.3 MEDIUM
The package hosted-git-info before 3.0.8 are vulnerable to Regular Expression Denial of Service (ReDoS) via regular expression shortcutMatch in the fromUrl function in index.js. The affected regular expression exhibits polynomial worst-case time complexity.
CVE-2021-23337 4 Lodash, Netapp, Oracle and 1 more 23 Lodash, Active Iq Unified Manager, Cloud Manager and 20 more 2024-11-21 6.5 MEDIUM 7.2 HIGH
Lodash versions prior to 4.17.21 are vulnerable to Command Injection via the template function.
CVE-2021-22947 8 Apple, Debian, Fedoraproject and 5 more 34 Macos, Debian Linux, Fedora and 31 more 2024-11-21 4.3 MEDIUM 5.9 MEDIUM
When curl >= 7.20.0 and <= 7.78.0 connects to an IMAP or POP3 server to retrieve data using STARTTLS to upgrade to TLS security, the server can respond and send back multiple responses at once that curl caches. curl would then upgrade to TLS but not flush the in-queue of cached responses but instead continue using and trustingthe responses it got *before* the TLS handshake as if they were authenticated.Using this flaw, it allows a Man-In-The-Middle attacker to first inject the fake responses, then pass-through the TLS traffic from the legitimate server and trick curl into sending data back to the user thinking the attacker's injected data comes from the TLS-protected server.
CVE-2021-22946 8 Apple, Debian, Fedoraproject and 5 more 37 Macos, Debian Linux, Fedora and 34 more 2024-11-21 5.0 MEDIUM 7.5 HIGH
A user can tell curl >= 7.20.0 and <= 7.78.0 to require a successful upgrade to TLS when speaking to an IMAP, POP3 or FTP server (`--ssl-reqd` on the command line or`CURLOPT_USE_SSL` set to `CURLUSESSL_CONTROL` or `CURLUSESSL_ALL` withlibcurl). This requirement could be bypassed if the server would return a properly crafted but perfectly legitimate response.This flaw would then make curl silently continue its operations **withoutTLS** contrary to the instructions and expectations, exposing possibly sensitive data in clear text over the network.
CVE-2021-22945 8 Apple, Debian, Fedoraproject and 5 more 25 Macos, Debian Linux, Fedora and 22 more 2024-11-21 5.8 MEDIUM 9.1 CRITICAL
When sending data to an MQTT server, libcurl <= 7.73.0 and 7.78.0 could in some circumstances erroneously keep a pointer to an already freed memory area and both use that again in a subsequent call to send data and also free it *again*.
CVE-2021-22940 5 Debian, Netapp, Nodejs and 2 more 7 Debian Linux, Nextgen Api, Node.js and 4 more 2024-11-21 5.0 MEDIUM 7.5 HIGH
Node.js before 16.6.1, 14.17.5, and 12.22.5 is vulnerable to a use after free attack where an attacker might be able to exploit the memory corruption, to change process behavior.
CVE-2021-22939 5 Debian, Netapp, Nodejs and 2 more 8 Debian Linux, Nextgen Api, Node.js and 5 more 2024-11-21 5.0 MEDIUM 5.3 MEDIUM
If the Node.js https API was used incorrectly and "undefined" was in passed for the "rejectUnauthorized" parameter, no error was returned and connections to servers with an expired certificate would have been accepted.
CVE-2021-22931 4 Netapp, Nodejs, Oracle and 1 more 10 Active Iq Unified Manager, Nextgen Api, Oncommand Insight and 7 more 2024-11-21 7.5 HIGH 9.8 CRITICAL
Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to Remote Code Execution, XSS, Application crashes due to missing input validation of host names returned by Domain Name Servers in Node.js dns library which can lead to output of wrong hostnames (leading to Domain Hijacking) and injection vulnerabilities in applications using the library.
CVE-2021-22930 4 Debian, Netapp, Nodejs and 1 more 4 Debian Linux, Nextgen Api, Node.js and 1 more 2024-11-21 7.5 HIGH 9.8 CRITICAL
Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to a use after free attack where an attacker might be able to exploit the memory corruption, to change process behavior.
CVE-2021-22926 5 Haxx, Netapp, Oracle and 2 more 26 Curl, Active Iq Unified Manager, Clustered Data Ontap and 23 more 2024-11-21 5.0 MEDIUM 7.5 HIGH
libcurl-using applications can ask for a specific client certificate to be used in a transfer. This is done with the `CURLOPT_SSLCERT` option (`--cert` with the command line tool).When libcurl is built to use the macOS native TLS library Secure Transport, an application can ask for the client certificate by name or with a file name - using the same option. If the name exists as a file, it will be used instead of by name.If the appliction runs with a current working directory that is writable by other users (like `/tmp`), a malicious user can create a file name with the same name as the app wants to use by name, and thereby trick the application to use the file based cert instead of the one referred to by name making libcurl send the wrong client certificate in the TLS connection handshake.